

ON INTUITIONISTIC FUZZY CONTRA REGULAR α GENERALIZED CONTINUOUS MAPPINGS

Nivetha M *¹, Jayanthi D² *¹ Department of Mathematics, Avinashilingam University, India.

² Department of Mathematics, Avinashilingam University, India.

*nivethathana@gmail.com

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topology, Intuitionistic fuzzy topological space, Intuitionistic fuzzy regular α generalized closed set, Intuitionistic fuzzy regular α generalized continuous mappings, Intuitionistic fuzzy contra regular α generalized continuous mappings.

ABSTRACT

The purpose of this paper is to introduce the notion of intuitionistic fuzzy contra regular α generalized continuous mappings and study their behaviour and properties in intuitionistic fuzzy topological spaces. Additionally we obtain some interesting theorems.

I. INTRODUCTION

Zadeh [13] introduced the notion of fuzzy sets. After which there have been a number of generalizations on this fundamental concept. Chang [2] proposed fuzzy topology in 1967. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy topological space. In 2010, K. Sakthivel [11] introduced intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy regular α generalized continuous mappings was introduced by Nivetha M and Jayanthi D [10]. In this paper we introduce the notion of intuitionistic fuzzy topological spaces. Additionally we obtain some interesting theorems.

II. PRELIMINARIES

Definition 2.1:[1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ where the function $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X\}$. Then

- a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- c) $A^c = \{\langle x, , \nu_A(x), \mu_A(x) \rangle / x \in X\}$
- d) $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X \}$
- e) A U B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X$ }

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$. The IFS $0 \sim = \{\langle x, 0, 1 \rangle / x \in X\}$ and $1 \sim = \{\langle x, 1, 0 \rangle / x \in X\}$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFS in X satisfying the following axioms:

Http: // www.ijesmr.com (C) International Journal of Engineering Sciences & Management Research [18-29]

🛞 IJESMR

International Journal OF Engineering Sciences & Management Research

- a) $0 \sim 1 \sim \epsilon \tau$
- b) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- c) $\cup G_i \in \tau$ for any family { $G_i / i \in J$ } $\subseteq \tau$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in (X,τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [3] Let (X,τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

 $int(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \}$

 $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$

Note that for any IFS A in (X,τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Corollary 2.5:[3] Let A, $A_i(i \in J)$ be intuitionistic fuzzy sets in X and B, $B_j(j \in K)$ be intuitionistic fuzzy sets in Y and $f: X \rightarrow Y$ be a function.

Then

- a) $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$
- b) $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$
- c) $A \subseteq f^{-1}(f(A))$ [If f is injective, then $A=f^{-1}(f(A))$]
- d) $f(f^{-1}(B)) \subseteq B$ [If f is surjective, then $B=f(f^{-1}(B))$]
- e) $f^{-1}(\cup B_j) = \bigcup f^{-1}(B_j)$
- f) $f^{-1}(\cap B_j) = \cap f^{-1}(B_j)$
- g) $f^{-1}(0\sim) = 0\sim$
- h) $f^{-1}(1 \sim) = 1 \sim$
- i) $f^{-1}(B^c) = (f^{-1}(B))^c$

Definition 2.6:[5] An IFS A in an IFTS (X,τ) is said to be an

- a) intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$
- b) intuitionistic fuzzy α closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A
- c) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$
- d) intuitionistic fuzzy regular closed set (IFRCS in short) if cl(int(A)) = A

Definition 2.7:[8] An IFS A of an IFTS (X, τ) is called an intuitionistic fuzzy regular α generalized closed set (IFR α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFROS in X.

Definition 2.8:[9] An IFS A of an IFTS (X,τ) is called an intuitionistic fuzzy regular α generalized open set (IFR α GOS in short) if α int(A) \supseteq U whenever A \supseteq U and U is an IFRCS in X.

The family of all IFR α GOSs of an IFTS (X, τ) is denoted by IFR α GO(X).

Definition 2.9:[12] Two IFSs A and B are said to be q-coincident (A q B in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.10:[4] An intuitionistic fuzzy point (IFP in short), written as $p_{(\alpha, \beta)}$, is defined to be an IFS of X given by

 $p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{if } x = p, \\ (0,1) & \text{otherwise.} \end{cases}$

An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$

Definition 2.11:[5] Let f be a mapping from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is said to be an intuitionistic fuzzy continuous (IF continuous in short) mapping if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.12:[12] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an intuitionistic fuzzy generalized continuous (IFG continuous in short) mapping if f⁻¹(B) \in IFGCS(X) for every IFCS B in Y.

Definition 2.13:[9] If every IFR α GCS in (X, τ) is an IF α CS in (X, τ), then the space can be called as an intuitionistic fuzzy regular α T_{1/2} (IF_{r α}T_{1/2} in short) space.

Definition 2.14:[9] An IFTS (X, τ) is said to be an intuitionistic fuzzy regular $\alpha T^*_{1/2}$ (IF_{r $\alpha}T^*_{1/2}$ in short) space if every IFR α GCS is an IFCS in (X, τ).</sub>

Definition 2.15:[9] An IFTS (X, τ) is said to be an intuitionistic fuzzy regular α generalized T_{1/2} (IF_{r α g}T_{1/2} in short) space if every IFR α GCS in X is an IF α GCS in X.

Definition 2.16:[7] Let f be a mapping from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is

said to be an

- (i) intuitionistic fuzzy contra continuous mapping (IFC continuous mapping in short) if $f^{-1}(B) \in IFO(X)$ for each IFCS B in Y
- (ii) intuitionistic fuzzy contra α continuous mapping (IFC α continuous mapping in short) if $f^{-1}(B) \in IF\alpha O(X)$ for each IFCS B in Y
- (iii) intuitionistic fuzzy contra pre continuous mapping (IFCP continuous mapping in short) if $f^{-1}(B) \in IFPO(X)$ for each IFCS B in Y

III. INTUITIONISTIC FUZZY CONTRA REGULAR α GENERALIZED CONTINUOUS MAPPINGS

In this section we introduce intuitionistic fuzzy contra regular α generalized continuous mapping and investigate some of its properties.

Definition 3.1: A mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ is called an intuitionistic fuzzy contra regular α generalized continuous (IFCR α G continuous in short) mapping if $f^{-1}(A)$ is an IFR α GCS in (X,τ) for every IFOS A of (Y,σ) .

Example 3.2: Let X = {a,b}, Y = {u,v} and G₁ = $\langle x, (0.4,0.4), (0.2,0.2) \rangle$ where $\mu_a=0.4$, $\mu_b=0.4$, $\nu_a=0.2$, $\nu_b=0.2$ and G₂ = $\langle x, (0.2,0.2), (0.7,0.7) \rangle$ where $\mu_a=0.2$, $\mu_b=0.2$, $\nu_a=0.7$, $\nu_b=0.7$ and G₃ = $\langle y, (0.2,0.1), (0.7,0.7) \rangle$ where $\mu_u=0.2$, $\mu_v=0.1$, $\nu_u=0.7$, $\nu_v=0.7$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS G₃ = $\langle y, (0.2,0.1), (0.7,0.7) \rangle$ is an IFOS in Y. Then f⁻¹(G₃) = $\langle x, (0.2,0.1), (0.7,0.7) \rangle$ where $\mu_a=0.2$, $\mu_b=0.1$, $\nu_a=0.7$, $\nu_b=0.7$ is an IFS in X. Then f⁻¹(G₃) \subseteq G₁ where G₁ is an IFROS in X. Now $\alpha cl(f^{-1}(G_3)) = G_1^c \subseteq G_1$. Therefore f⁻¹(G₃^c) is an IFR α GCS in X. Thus f is an IFCR α G continuous mapping.

Remark 3.3: Every IFC continuous mapping and IF α C continuous mapping are IFCR α G continuous mapping but the converses are not true in general. This can be seen from the following examples.

Example 3.4: Let X = {a,b}, Y = {u,v} and G₁ = $\langle x, (0.3,0.3), (0.2,0.2) \rangle$, G₂ = $\langle x, (0.2,0.2), (0.7,0.7) \rangle$ and G₃ = $\langle y, (0.1,0.1), (0.6,0.6) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS G₃ = $\langle y, (0.1,0.1), (0.6,0.6) \rangle$ is an IFOS in Y. Then f⁻¹(G₃) = $\langle x, (0.1,0.1), (0.6,0.6) \rangle$ is an IFS in X. Then f⁻¹(G₃) \subseteq G₁ where G₁ is an IFROS in X. Now $\alpha cl(f^{-1}(G_3)) = G_1^c \subseteq G_1$. Therefore f⁻¹(G₃) is an IFR α GCS in X but not an IFCS in X, since $cl(f^{-1}(G_3)) = G_1^c \neq f^{-1}(G_3)$. Therefore f is an IFCR α G continuous mapping but not an IFC continuous mapping.

Example 3.5: Let X = {a,b}, Y = {u,v} and G₁ = $\langle x, (0.5,0.4), (0.2,0.2) \rangle$, G₂ = $\langle x, (0.2,0.2), (0.7,0.7) \rangle$ and G₃ = $\langle y, (0.2,0.1), (0.6,0.6) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS G₃ = $\langle y, (0.2,0.1), (0.6,0.6) \rangle$ is an IFOS in Y. Then f⁻¹(G₃) = $\langle x, (0.2,0.1), (0.6,0.6) \rangle$ is an IFS in X. Then f⁻¹(G₃) \subseteq G₁ where G₁ is an IFROS in X. Now $\alpha cl(f^{-1}(G_3)) = G_1^c \subseteq G_1$. Therefore f⁻¹(G₃) is an IFR α GCS in X but not an IF α CS in X, since $cl(int(cl(f^{-1}(G_3)))) = G_1^c \notin f^{-1}(G_3)$. Therefore f is an IFCR α G continuous mapping but not an IFC α continuous mapping.

Remark 3.6: IFCP continuous mapping and IFCRaG continuous mapping are independent to each other.

Example 3.7: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.4,0.3), (0.1,0.1) \rangle$, $G_2 = \langle x, (0.1,0.1), (0.7,0.7) \rangle$ and $G_3 = \langle y, (0.1,0.1), (0.6,0.7) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3 = \langle y, (0.1,0.1), (0.6,0.7) \rangle$ is an IFOS in Y. Then $f^{-1}(G_3) = \langle x, (0.1,0.1), (0.6,0.7) \rangle$ is an IFS in X. Then $f^{-1}(G_3) \subseteq G_1$ where G_1 is an IFROS in X. Now $\alpha cl(f^{-1}(G_3)) = G_1^c \subseteq G_1$. Therefore $f^{-1}(G_3)$ is an IFR α GCS in X but not an IFPCS in X, since $cl(int(f^{-1}(G_3))) = G_1^c \notin f^{-1}(G_3)$. Therefore f is an IFCR α G continuous mapping but not an IFCP continuous mapping.

Example 3.8: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.7,0.6), (0.2,0.2) \rangle$, $G_2 = \langle x, (0.1,0.2), (0.7,0.6) \rangle$ and $G_3 = \langle y, (0.1,0.2), (0.8,0.8) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3 = \langle y, (0.1,0.2), (0.8,0.8) \rangle$ is an IFOS in Y. Then $f^{-1}(G_3) = \langle x, (0.1,0.2), (0.8,0.8) \rangle$ is an IFS in X. Now $cl(int(f^{-1}(G_3))) = 0 \sim \subseteq f^{-1}(G_3)$. Therefore $f^{-1}(G_3)$ is an IFPCS in X but not an IFR α GCS in X, since $\alpha cl(f^{-1}(G_3)) = G_1^c \notin G_2$ but $f^{-1}(G_3) \subseteq G_2$ where G_2 is an IFROS in X. Therefore f is an IFCP continuous mapping but not an IFCR α G continuous mapping.

Remark 3.9: IFCS continuous mapping and IFCRαG continuous mapping are independent to each other.

Example 3.10: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.5,0.5), (0.3,0.2) \rangle$, $G_2 = \langle x, (0.1,0.2), (0.9,0.8) \rangle$ and $G_3 = \langle y, (0.3,0.1), (0.6,0.6) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3 = \langle y, (0.3,0.1), (0.6,0.6) \rangle$ is an IFOS in Y. Then $f^{-1}(G_3) = \langle x, (0.3,0.1), (0.6,0.6) \rangle$ is an IFS in X. Then $f^{-1}(G_3) \subseteq G_1$ where G_1 is an IFROS in X. Now $\alpha cl(f^{-1}(G_3)) = G_1^c \subseteq G_1$. Therefore $f^{-1}(G_3)$ is an IFR α GCS in X but not an IFSCS in X, since int $(cl(f^{-1}(G_3))) = G_2 \notin f^{-1}(G_3)$. Therefore f is an IFCR α G continuous mapping but not an IFCS continuous mapping.

Example 3.11: Let X = {a,b}, Y = {u,v} and G₁ = $\langle x, (0.5,0.2), (0.5,0.7) \rangle$, G₂ = $\langle x, (0.1,0.1), (0.7,0.7) \rangle$ and G₃ = $\langle y, (0.5,0.2), (0.5,0.7) \rangle$. (0.5,0.7). Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS G₃ = $\langle y, (0.5,0.2), (0.5,0.7) \rangle$ is an IFOS in Y. Then f⁻¹(G₃) = $\langle x, (0.5,0.2), (0.5,0.7) \rangle$ is an IFS in X. Now int(cl(f⁻¹(G₃))) = f⁻¹(G₃) is an IFSCS in X but not an IFR α GCS in X, since α cl(f⁻¹(G₃)) = G₁^c \nsubseteq G₁ but f⁻¹(G₃) \subseteq G₁ where G₁ is an IFROS in X. Therefore f is an IFCS continuous mapping but not an IFCR α G continuous mapping.

Theorem 3.12: A mapping $f : X \to Y$ is an IFCR α G continuous mapping if and only if the inverse image of each IFCS in Y is an IFR α GOS in X.

Proof: Necessity: Let A be an IFCS in Y. This implies A^c is an IFOS in Y. Since f is an IFCR α G continuous mapping, $f^{-1}(A^c)$ is an IFR α GCS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IFR α GOS in X.

Sufficiency: Let A be an IFOS in Y. This implies A^c is an IFCS in Y. By hypothesis, $f^{-1}(A^c)$ is an IFR α GOS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, where $(f^{-1}(A))^c$ is an IFR α GOS in X, $f^{-1}(A)$ is an IFR α GCS in X. Hence f is an IFCR α G continuous mapping.

Theorem 3.13: Let $f: (X,\tau) \to (Y,\sigma)$ be a mapping and let $f^{-1}(A)$ be an IFROS in X for every IFCS A in Y. Then f is an IFCR α G continuous mapping.

Proof: Let A be an IFCS in Y. Then f⁻¹(A) is an IFROS in X, by hypothesis. Since every IFROS is an IFR α GOS [9], f⁻¹(A) is an IFR α GOS in X. Hence f is an IFCR α G continuous mapping, by Theorem 3.12.

Theorem 3.14: Let $f: (X,\tau) \to (Y,\sigma)$ be an IFCR α G continuous mapping, then

- (i) f is an IFC continuous mapping if X is an $IF_{r\alpha}T^*_{1/2}$ space
- (ii) f is an IFC continuous mapping if X is an $IF_{r\alpha}T_{1/2}$ space
- (iii) f is an IFC α G continuous mapping if X is an IF_{rag}T_{1/2} space

Proof: (i) Let A be an IFOS in Y. Then $f^{-1}(A)$ is an IFR α GCS in X, by hypothesis. Since X is an IF_{r α}T^{*}_{1/2} space, $f^{-1}(A)$ is an IFCS in X. Hence f is an IFC continuous mapping.

(ii) Let A be an IFOS in Y. Then f⁻¹(A) is an IFR α GCS in X, by hypothesis. Since X is an IFr $_{\alpha}$ T_{1/2} space, f⁻¹(A) is an IF α CS in X. Hence f is an IFC α continuous mapping.

(iii) Let A be an IFOS in Y. Then $f^{-1}(A)$ is an IFR α GCS in X, by hypothesis. Since X is an IFr $_{r\alpha g}T_{1/2}$ space, $f^{-1}(A)$ is an IF α GCS in X. Hence f is an IFC α G continuous mapping.

Theorem 3.15: Let $f : (X,\tau) \to (Y,\sigma)$ be an IFCR α G continuous mapping and $g : (Y,\sigma) \to (Z,\gamma)$ be an IF continuous mapping, then $g \circ f : (X,\tau) \to (Z,\gamma)$ is an IFCR α G continuous mapping.

Proof: Let A be an IFOS in Z. Then g⁻¹(A) is an IFOS in Y, by hypothesis. Since f is an IFCR α G continuous mapping, f⁻¹(g⁻¹(A)) is an IFR α GCS in X. Hence gof is an IFCR α G continuous mapping.

Theorem 3.16: Let $f: (X,\tau) \to (Y,\sigma)$ be an IFCR α G continuous mapping and $g: (Y,\sigma) \to (Z,\gamma)$ be an IFG continuous mapping and Y is an IFT_{1/2} space, then $g \circ f: (X,\tau) \to (Z,\gamma)$ is an IFCR α G continuous mapping.

Proof: Let A be an IFOS in Z. Then g⁻¹(A) is an IFGOS in Y, by hypothesis. Since Y is an IFT_{1/2} space, g⁻¹(A) is an IFOS in Y. Therefore f⁻¹(g⁻¹(A)) is an IFR α GCS in X, by hypothesis. Hence gof is an IFCR α G continuous mapping.

Theorem 3.17: Let $f: X \rightarrow Y$ be a mapping. Suppose that one of the following properties hold:

- (i) $f(\alpha cl(A)) \subseteq int(f(A))$ for each IFS A in X
- (ii) $\alpha cl(f^{-1}(B)) \subseteq f^{-1}(int(B))$ for each IFS B in Y
- (iii) $f^{-1}(cl(B)) \subseteq \alpha int(f^{-1}(B))$ for each IFS B in Y

Then f is an IFCR α G continuous mapping.

Proof: (i) \Rightarrow (ii) Let B be an IFS in Y. Then f⁻¹(B) is an IFS in X. By hypothesis, $f(\alpha cl(f^{-1}(B))) \subseteq int(f(f^{-1}(B))) \subseteq int(B)$. Now $\alpha cl(f^{-1}(B)) \subseteq f^{-1}(f(\alpha cl(f^{-1}(B)))) \subseteq f^{-1}(int(B))$

(ii) \Rightarrow (iii) is obvious by taking complement in (ii).

Suppose (iii) holds: Let A be an IFCS in Y. Then cl(A) = A and $f^{-1}(A)$ is an IFS in X. Now $f^{-1}(A) = f^{-1}(cl(A)) \subseteq \alpha int(f^{-1}(A))$ $\subseteq f^{-1}(A)$, by hypothesis. This implies $f^{-1}(A)$ is an IF α OS in X and hence an IFR α GOS[9] in X. Thus f is an IFCR α G continuous mapping.

Theorem 3.18: Let $f: X \to Y$ be a bijective mapping. Then f is an IFCR α G continuous mapping if $cl(f(A)) \subseteq f(\alpha int(A))$ for every IFS A in X.

Proof: Let A be an IFCS in Y. Then cl(A) = A and $f^{-1}(A)$ is an IFS in X. By hypothesis $cl(f(f^{-1}(A))) \subseteq f(\alpha int(f^{-1}(A)))$. Since f is an onto, $f(f^{-1}(A)) = A$. Therefore $A = cl(A) = cl(f(f^{-1}(A))) \subseteq f(\alpha int(f^{-1}(A)))$. Now $f^{-1}(A) \subseteq f^{-1}(f(\alpha int(f^{-1}(A)))) = \alpha int(f^{-1}(A)) \subseteq f^{-1}(A)$. Hence $f^{-1}(A)$ is an IF α OS in X and hence an IFR α GOS[9] in X. Thus f is an IFCR α G continuous mapping.

Theorem 3.19: If $f: X \to Y$ is an IFCR α G continuous mapping, where X is an IF_{r α}T_{1/2} space, then the following conditions hold:

- (i) $\alpha cl(f^{-1}(B)) \subseteq f^{-1}(int(\alpha cl(B)))$ for every IFOS B in Y
- (ii) $f^{-1}(cl(\alpha int(B))) \subseteq \alpha int(f^{-1}(B))$ for every IFCS B in Y

Http: // www.ijesmr.com (C) International Journal of Engineering Sciences & Management Research [18-29]

Proof: (i) Let B be an IFOS in Y. By hypothesis $f^{-1}(B)$ is an IFR α GCS in X. Since X is an IF_{r α}T_{1/2} space, $f^{-1}(B)$ is an IF α CS in X. This implies α cl($f^{-1}(B)$) = $f^{-1}(B)$ = $f^{-1}(int(B) \subseteq f^{-1}(int(\alpha cl(B)))$.

(ii) can be proved easily by taking the complement of (i).

Theorem 3.20: If $f: X \to Y$ is a mapping where X is an $IF_{r\alpha}T_{1/2}$ space, then the following are equivalent:

- (i) f is an IFCR α G continuous mapping
- (ii) for each IFP $p_{(\alpha,\beta)} \in X$ and for each IFCS B containing $f(p_{(\alpha,\beta)})$, there exists an IF α OS A $\subseteq X$ and $p_{(\alpha,\beta)} \in A$ such that $A \subseteq f^{-1}(B)$
- (iii) for each IFP $p_{(\alpha,\beta)} \in X$ and for each IFCS B containing $f(p_{(\alpha,\beta)})$, there exists an IF α OS A $\subseteq X$ and $p_{(\alpha,\beta)} \in A$ such that $f(A) \subseteq B$

Proof: (i) \Rightarrow (ii) Let B be an IFCS in Y. Let $p_{(\alpha,\beta)}$ be an IFP in X such that $f(p_{(\alpha,\beta)}) \in B$. Then $p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \in f^{-1}(B)$. By hypothesis $f^{-1}(B)$ is an IFR α GOS in X. Since X is an IF $_{r\alpha}T_{1/2}$ space, $f^{-1}(B)$ is an IF α OS in X. Now let $A = \alpha$ int $(f^{-1}(B)) \subseteq f^{-1}(B)$. Therefore $A \subseteq f^{-1}(B)$.

(ii) \Rightarrow (iii) Let B be IFCS in Y. Let $p_{(\alpha,\beta)}$ be an IFP in X such that $f(p_{(\alpha,\beta)}) \in B$. Then $p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \in f^{-1}(B)$. By hypothesis $f^{-1}(B)$ is an IF α OS in X and A $\subseteq f^{-1}(B)$. This implies $f(A) \subseteq f(f^{-1}(B)) \subseteq B$.

(iii) \Rightarrow (i) Let B be any IFCS in Y and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)}) \in B$. By hypothesis there exists an IF α OS A in X such that $p_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$. This implies $p_{(\alpha,\beta)} \in A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(B)$. That is $p_{(\alpha,\beta)} \in f^{-1}(B)$. Since A is an IF α OS, $A = \alpha$ int(A) $\subseteq \alpha$ int($f^{-1}(B)$). Therefore $p_{(\alpha,\beta)} \in \alpha$ int($f^{-1}(B)$). But $f^{-1}(B) = \bigcup_{p(\alpha,\beta)} \in f^{-1}(B)$ $p_{(\alpha,\beta)} \subseteq \alpha$ int($f^{-1}(B)$) $\subseteq f^{-1}(B)$. Hence $f^{-1}(B)$ is an IF α OS in X and hence $f^{-1}(B)$ is an IFR α GOS[9] in X. Thus f is an IFCR α G continuous mapping.

Theorem 3.21: For a mapping $f: X \to Y$, the following are equivalent, where X is an $IF_{r\alpha}T_{1/2}$ space:

- (i) f is an IFCRaG continuous mapping
- (ii) for every IFCS A in Y, f⁻¹(A) is an IFR α GOS in X
- (iii) for every IFOS B in Y, f $^{-1}$ (B) is an IFR α GCS in X
- (iv) for any IFCS A in Y and for any IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)})_q A$, then $p_{(\alpha,\beta)q} aint(f^{-1}(A))$
- (v) for any IFCS A in Y and for any IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)}) |_q A$, then there exists an IFR α GOS B such that $p_{(\alpha,\beta)} |_q B$ and $f(B) \subseteq A$

Proof: (i) \Leftrightarrow (ii) and (ii) \Leftrightarrow (iii) are obvious.

(ii) \Rightarrow (iv) Let $A \subseteq Y$ be an IFCS and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)}) \ _q A$. Then $p_{(\alpha,\beta)} \ _q f^{-1}(A)$. By hypothesis, $f^{-1}(A)$ is an IFR α GOS in X. Since X is an IFr $_{\alpha}T_{1/2}$ space, $f^{-1}(A)$ is an IF α OS in X. This implies α int($f^{-1}(A)$) = $f^{-1}(A)$. Hence $p_{(\alpha,\beta)} \ _q \alpha$ int($f^{-1}(A)$).

(iv) \Rightarrow (ii) Let $A \subseteq Y$ be an IFCS and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)})_q A$. Then $p_{(\alpha,\beta) q} f^{-1}(A)$. By hypothesis, $p_{(\alpha,\beta) q} \alpha int(f^{-1}(A))$. That is $f^{-1}(A) \subseteq \alpha int(f^{-1}(A))$. But $\alpha int(f^{-1}(A)) \subseteq f^{-1}(A)$. Therefore $f^{-1}(A) = \alpha int(f^{-1}(A))$. Thus $f^{-1}(A)$ is an IF α OS in X and hence $f^{-1}(A)$ is an IFR α GOS[9] in X.

(iv) \Rightarrow (v) Let $A \subseteq Y$ be an IFCS and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)}) \circ_q A$. Then $p_{(\alpha,\beta)} \circ_q f^{-1}(A)$. By hypothesis, $p_{(\alpha,\beta)} \circ_q \operatorname{aint}(f^{-1}(A))$. Thus $f^{-1}(A)$ is an IF α OS in X and hence $f^{-1}(A)$ is an IF α GOS[9] in X. Let $f^{-1}(A) = B$. Therefore $p_{(\alpha,\beta)} \circ_q B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

 $(v) \Rightarrow (iv)$ Let $A \subseteq Y$ be an IFCS and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)}) = A$. Then $p_{(\alpha,\beta)} = f^{-1}(A)$. By hypothesis, there exists an IFR α GOS B in X such that $p_{(\alpha,\beta)} = B$ and $f(B) \subseteq A$. Let $B = f^{-1}(A)$. Since X is an IFr α T_{1/2} space, $f^{-1}(A)$ is an IF α OS in X. Therefore $p_{(\alpha,\beta)} = \alpha$ and $(f^{-1}(A))$.

Theorem 3.22: A mapping $f: X \to Y$ is an IFCR α G continuous mapping if $f^{-1}(\alpha cl(B)) \subseteq int(f^{-1}(B))$ for every IFS B in Y.

Proof: Let $B \subseteq Y$ be an IFCS. Then cl(B) = B. Since every IFCS is an IF α CS, $\alpha cl(B) = B$. Now by hypothesis, $f^{-1}(B) = f^{-1}(\alpha cl(B)) \subseteq$ int $(f^{-1}(B)) \subseteq f^{-1}(B)$. This implies $f^{-1}(B) = int(f^{-1}(B))$. Therefore $f^{-1}(B)$ is an IFOS in X. Hence f is an IFC continuous mapping. Then by Remark 3.3, f is an IFCR α G continuous mapping.

Theorem 3.23: A mapping $f : X \to Y$ is an IFCR α G continuous mapping, where X is an IF_{r α}T_{1/2} space if and only if $f^{-1}(\alpha cl(B)) \subseteq \alpha int(f^{-1}(cl(B)))$ for every IFS B in Y.

Proof: Necessity: Let $B \subseteq Y$ be an IFS. Then cl(B) is an IFCS in Y. By hypothesis $f^{-1}(cl(B))$ is an IFR α GOS in X. Since X is an IF $_{r\alpha}T_{1/2}$ space, $f^{-1}(cl(B))$ is an IF α OS in X. This implies $f^{-1}(cl(B)) = \alpha int(f^{-1}(cl(B)))$. Therefore $f^{-1}(\alpha cl(B)) \subseteq f^{-1}(cl(B)) = \alpha int(f^{-1}(cl(B)))$.

Sufficiency: Let $B \subseteq Y$ be an IFS. Then cl(B) is an IFCS in Y. By hypothesis, $f^{-1}(\alpha cl(B)) \subseteq \alpha int(f^{-1}(cl(B))) = \alpha int(f^{-1}(B))$. But $\alpha cl(B) = B$. Therefore $f^{-1}(B) = f^{-1}(\alpha cl(B)) \subseteq \alpha int(f^{-1}(B)) \subseteq f^{-1}(B)$. This implies $f^{-1}(B)$ is an IF α OS in X and hence $f^{-1}(B)$ is an IFR α GOS[9] in X. Hence f is an IFCR α G continuous mapping.

Theorem 3.24: An IF continuous mapping $f: X \rightarrow Y$ is an IFCR α G continuous mapping, if IFR α GO(X) = IFR α GC(X).

Proof: Let $A \subseteq Y$ be an IFOS. By hypothesis, $f^{-1}(A)$ is an IFOS in X and hence $f^{-1}(A)$ is an IFR α GOS[9] in X. Thus $f^{-1}(A)$ is an IFR α GCS in X, as IFR α GO(X) = IFR α GC(X). Therefore f is an IFCR α G continuous mapping.

IV. CONCLUSION

Thus we have analyzed relationship between intuitionistic fuzzy regular α generalized contra continuous mapping and the already existing intuitionistic fuzzy continuous mappings and obtain many interesting theorem concern with the intuitionistic fuzzy regular α generalized contra continuous mapping

V. REFERENCES

- [1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- [2] Chang, C.L., Fuzzy Topological Spaces, J.Math. Anal. Appl. 24 182-190, (1968).
- [3] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- [4] Coker, D and Demirci, M., On intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets 1(1995), 79-84.

- [5] Gurcay, H Coker, D and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math., 5(1997), 365-378.
- [6] Joung kon Jeon, Young Bae Jun and Jin Han Park., Intuitionistic fuzzy alpha continuity and Intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [7] Krsteska, B., E. Ekici, Intuitionistic fuzzy contra strong precontinuity, Faculty of Sciences and Mathematics, University of Nis, Siberia, 2007, 273–284.
- [8] Nivetha, M and Jayanthi, D., On Intuitionistic Fuzzy Regular α Generalized closed sets, International Journal of Engineering Sciences & Research Technology, Vol 4, Issue 2, pp.234-237, 2015.
- [9] Nivetha, M and Jayanthi, D., Regular α Generalized open sets in Intuitionistic Fuzzy Topological Space, International Journal of Innovative Research in Science, Engineering and Technology, Vol 4, Issue 3, pp.897-901, March 2015.
- [10] Nivetha, M and Jayanthi, D., On Intuitionistic Fuzzy Regular α Generalized continuous mappings, (accepted).
- [11] Sakthivel, K., Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences, Vol. 4, 2010, no. 37, 1831 - 1842
- [12] Thakur, S. S and Rekha Chaturvedi., Regular gerenalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Mathematica, 16(2006), 257-272,
- [13] Zadeh, L.H., Fuzzy Sets, Information and Control, 18, 338-353, (1965).

VI. AUTHOR BIBLOGRAPHY

Place here a	Nivetha M
photograph of	Email:
the author	<u>nivethathana@gmail.com</u>
Place here a	Jayanthi D
photograph of	Email:
the author	jayanthimaths@rediffmail.com