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ABSTRACT 
This paper concerns with the study of construction of Diophantine quadruples such that the product of  any two 

elements of the set added  by a  perfect square is a perfect square. 

 

 

INTRODUCTION 

Let q be a non-zero number. A set  1 2, ,... ma a a  of non-zero rational is called a ( )D q - mtuple, if i ja a q is 

a square  for all 1 i j m   . The mathematician Diophantus of Alexandria considered a variety of problems 

on indeterminant equations with rational or integers solutions. In particular, one of the problems was to find the 

sets of distinct positive rational numbers such that the product of any two numbers is one less than a rational 

square [14] and Diophantus found four positive rationals 
1 33 17 105

, , ,
16 16 4 16

[4,5]. The first set of four positive 

integers with the same property, the set  1,3,8,120  was found by Fermat. It was proved in 1969 by Baker 

and Davenport [3] that a fifth positive integer cannot be added to this set and one may refer [6, 7,11] for 

generalization. However, Euler discovered that  a fifth rational number can be added to give the following 

rational Diophantine quintuple 
777480

1,3,8,120,
8288641

 
 
 

. Rational sextuples with two equal elements have 

been given in [2]. In this 1999, Gibs [13] found several examples of rational Diophantine sextuples, eg., 

11 35 155 512 1235 180873
, , , , ,

192 192 27 27 48 16

 
 
 

, 
17 265 2145 23460 2352

, , , 252, ,
448 448 448 7 7921

 
 
 

. 

All known Diophantine quadruples are regular and it has been conjectured that there are no irregular 

Diophantine quadruples [1,13] (this is known to be true for polynomials with integer  co-efficients [8]). If so 

then there are no Diophantine quintuples. However there are infinitely many irregular rational Diophantine 

quadruples. The smallest is 
1 33 105

,5, ,
4 4 4

. Many of these irregular quadruples are examples of another 

common type for which two of the subtriples are regular i.e.,  , , ,a b c d is an irregular rational Diophantine 

quadruple, while  , ,a b c and  , ,da b are regular Diophantine triples. These are known as semi – regular 

rational Diophantine quadruples. These are only finitely   many of these for any given common denominator l 

and they can readily found. 

Moreover in [12], it has been proved that 
2( )D k  - triple  2 2 2, 1,4 1k k k   cannot be extended to a 

2( )D k  - quintuple. In [10], it has been proved that 
2( )D k  - triple  2 21, 1, 4k k   cannot be extended 

to a 
2( )D k  - quadruple if 5k  . 
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 METHOD OF ANALYSIS 
SECTION I: 

               In this section we search the diophantine quadruple ( , , , )a b c d  such that product of any  

two of them added with 
2 2n k is a perfect square. Also,the fourth tuple is either integer  

or rational number. 

           Consider (6 ) 6,& (6 ) 6a n k b n k       

Note that 
2 2ab n k is a perfect square. 

Let c be any non-zero integer such that 

                               
2 2 2ac n k                                                                                                                      (1) 

                               
2 2 2bc n k                                                                                                                      (2) 

From (1), we have 

    

2 2 2n k
c

a

 
                                                  (3) 

 Assume  ((6 ) 6)X n k T                                                 (4) 

  ((6 ) 6)X n k T                                           (5) 

 On substituting the value of (3) in (2) and by using (4) and (5), we get  

    2 2 2 2((6 ) 6)((6 ) 6)X n k n k T n k        

 whose initial solution is 0 1,T  0X 6( 1)k   

 Thus    6( 1) (6 ) 6k n k       

    6( 1) (6 ) 6k n k         

 Therefore from (3)  

    24( 1)c k   

 Let d be any non-zero integer such that  

                                     
2 2 2ad n k A                                                                                               (6) 

                                     
2 2 2bd n k B                                                                                                              (7)       

                                     
2 2 2cd n k C                                                                                                              (8) 

           Solving (6), (7) and (8) we get the value of d  

                                     
2 2 2

2 2

24( 1)
144( 1)

k
d k n k

n k


               

 

  Substituting the value of d in (6),(7) & (8) then 

                                      

2
2 2 2

2 2 144( 1) 12 ( 1)n k k nk k
ad n k

nk

    
   

 
 

                                     

2
2 2 2

2 2 144( 1) 12 ( 1)n k k nk k
bd n k

nk

    
   

 
 

                                     

2
2 2 2

2 2 288( 1)n k k
cd n k

nk

  
   

   

Therefore ( , , , )a b c d  is a mixed diophantine quadruple with property 
2 2( )D n k  as the fourth tuple 

 may not always be integer. In what follows, a few examples of diophantine quadruple integer are presented.  
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Table.1 

 

                                               

Section  II:  

In this section we search the diophantine quadruple ( , , , )a b c d  such that  

product of any two of them added with 
2k is a perfect square. 

               Assume 
2a n  and    

2 2 12 .2n nb n k    

               
2ab k is a perfect square. 

Let c be any non-zero integer such that 

                               
2 2ac k                                                                                                                          (9) 

                               
2 2bc k                                                                                                                        (10) 

From (9), we have 

                                     

2 2k
c

a

 
                                                                                    (11) 

 Assume  
2X n T                                                                                     (12) 

  
2 2 1( 2 .2 )n nX n k T                                      (13) 

 On substituting the value of (11) in (10) and by using (12) and (13), we get  

   
2 2 2 2 1 2 2( 2 .2 )n nX n n k T k   

 
     

 Whose initial solution is 0 1,T 
2 2

0X ( 2 )nn k   

 Thus    
2 2( 2 )nn k n     

    
2 2 2 1( 2 ) ( 2 .2 )n n nn k n k        

 Therefore from (11)  

   
2 2(2 1) 2 (2 1)n nc n k     

 Let d be any non-zero integer such that  

                                     
2 2ad k A                                                                                                  (14) 

                                     
2 2bd k B                                                                                                  (15)       

n  k  ( , , , )a b c d  

1 

2 (4,8,24,840) 

3 (9,15,48,3024) 

4 (14,22,72,5760) 

6 (24,36,120,11880) 

8 (34,50,168,18354) 

12 (54,78,264,31680) 

2 

2 (2,10,24,192) 

3 (6,18,48,720) 

4 (10,26,72,1386) 

6 (18,42,120,2880) 

12 (42,90,264,7722) 

3 

2 (0,12,24,72) 

4 (6,30,72,576) 

8 (18,66,168,1890) 

4 
2 (-2,14,24,30) 

3 (0,24,48,144) 
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2 2cd k C                                                                                                  (16) 

             Solving (14), (15) and (16) we get the value of d  

2 2 2 2 3 6 2 2 4 2 3

2

1
20 2 (2 1) 4 ( ) 8 2 4 2 (2 1) 8 (3.2 2.2 2 )n n n n n n n nd k n k n k k n kn

k
             

            Substituting the value of d in (14),(15) & (16) then 

                                    

2
2 2 2 2 2

2 2 2 ( 2 ) 2 (2.2 1)n n nk n n n kn
ad k

k

    
   

 
 

                                    

2
2 2 2 4 2

2 (4.2 1) 2 2 (3 2 2 ) 2 2 (2 1)n n n n nk k n n n
bd k

k

     
   

 
 

                                  

2
2 2 2 4 2

2 (4.2 3) 2 (3.2 4.2 1) 2 2 (2 1)n n n n nk kn n
cd k

k

      
   

 
  

 

Therefore ( , , , )a b c d  is a mixed diophantine quadruple with property 
2( )D k  as the fourth tuple may not 

always be integer, a few numerical examples of diophantine quadruple integer are presented in the following 

table.  

Table .2 

 

 

Section III: 

                        In this section we search the diophantine quadruple ( , , , )a b c d  such that  

product of any two of them added with 
24.2 n

is a perfect square. 

      

Assume 
2 12 2 1n n

na Carl      and    
2 12 2 1n n

nb Ky      

               
24.2 nab is a perfect square. 

n  k  ( , , , )a b c d  

 

1 

1 (1,8,15,528) 

2 (1,12,21,320) 

3 (1,16,27,280) 

4 (1,20,33,273) 

6 (1,28,45,288) 

2 

1 (4,72,110,127092) 

2 (4,80,120,38808) 

4 (4,96,140,13920) 

5 (4,104,150,10500) 

8 (4,128,180,6384) 

10 (4,144,200,5304) 

3 

1 (9,592,747,15922760) 

2 (9,608,765,4188844) 

3 (9,624,783,1957200) 

4 (9,640,801,1156340) 

6 (9,672,837,565500) 

8 (9,704,873,348880) 

9 (9,720,891,288360) 

4 
1 (16,4128,4658,1230623940) 

2 (16,4160,4692,312317256) 
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Let c be any non-zero integer such that 

                               
2 24.2 nac                                                                                                      (17) 

                               
2 24.2 nbc                                                                                                      (18) 

From (17), we have 

       

2 24.2 n

c
a

 
                                  (19) 

 Assume  
2 1(2 2 1)n nX T                                                            (20) 

  
2 1(2 2 1)n nX T                         (21) 

  

On substituting the value of (19) in (18) and by using (20) and (21), we get  

   
2 2 1 2 1 2 2(2 2 1)(2 2 1) 4.2n n n n nX T       

 
  

 whose initial solution is 0 1,T   
2 2

0X (2 1)n   

      Thus    
2 12.2 2 2n n     

    
2 12.2 2 2n n       

 Therefore from (19)  

   
24(2 1)nc    

 Let d be any non-zero integer such that  

                                     
2 2ad k A                                                                                                  (22) 

                                     
2 2bd k B                                                                                                  (23)       

                                     
2 2cd k C                                                                                                   (24) 

             Solving (22), (23) and (24) we get the value of d  

                                     
4 2

2

4
4.2 16.2 16

2

n n

n
d      

            Substituting the value of d in (22),(23) & (24) then 

                                    

2

2 3 2 2
4.2 2.2 2.2 6.2 2

2

n n n n

n
ad

 
      

 
 

                                    

2

2 3 2 2
4.2 2.2 2.2 6.2 2

2

n n n n

n
bd

 
      

 
 

                                    

2

2 3 4
4.2 4.2 10.2

2

n n n

n
cd

 
    

 
 

 

Remark: 

It is seen that the fourth tuple d  is integer only when 1n   and the corresponding quadruple is 

 (-1,7,12,15) with the property
2(4 )D . 

 

CONCLUSION 

To conclude one may construct  a  Diophantine quadruples with suitable properties. 
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