

International Journal OF Engineering Sciences & Management Research THE SPACES OF GENERALISED STRONGLY ALMOST CONVERGENT SEQUENCES

Ajaya Kumar Singh*

*Department of Mathematics, P.N.College (Auto), Khordha

Keywords: Generalised binomial coefficient, Banach limit, generalised almost convergence, strongly almost convergence sequences, Cauchy's theorem on limit, HÖlder'sinequality, sub-linear functional, M-convergent sequences, Hahn Banach theorem.

ABSTRACT

The object of the present paper is to introduce almost convergence by means of generalised binomial coefficients and definenew sequence spaces and various inclusions and topological properties.

STRONGLY ALMOST CONVERGENT SEQUENCES

Let $T_{k,n}(x_p)$ be defined by

$$T_{k,n}(x_p) = \begin{cases} x_{n+p,} & k = 0\\ \\ \frac{1}{A_n^{k,\delta}} \sum_{v=p}^{p+n} A_{p+n-v}^{k-1,\delta} x_v, & k > 0 \end{cases}$$

A sequence $x = \{x_n\}$ is said to be strongly almost convergent to a number s if

$$\frac{1}{n}\sum_{i=1}^{n} |T_{k-1,i}(x_{p_{j}}) - s| \to 0 \text{ as } n \to \infty \text{ uniformly in } p.$$
where $Q_{k}(x) = \inf_{p_{1},\dots,p_{r}} \lim_{n \to \infty} \sup \frac{1}{r}\sum_{j=1}^{r} |T_{k,n}(x_{p_{j}})|$
(1)

We define $[f_k]_q$, for $q \ge 1$ and $k \ge 1$ the spaces of strongly f_k - almost convergent sequences with index q :

$$[f_k]_q = \left\{ x: \lim_{n \to \infty} \frac{1}{n+1} \sum_{i=0}^n |T_{k-1,i}(x_p) - s|^q = 0, \text{ uniformly in } p \right\}.$$
 (2)

We observe that

$$\lim_{n \to \infty} \left\{ \frac{1}{n+1} \sum_{i=0}^{n} |T_{k-1,i}(x_p) - s|^q \right\}^{1/q} = \sup_{i} |T_{k-1,i}(x_p) - s|$$
(3)

This implies that $T_{k-1,i}(x_p) \to S$ as $i \to \infty$, uniformly in p. it follows immediately, by Cauchy's Theorem on limit, that

$$\frac{1}{n+1}\sum_{i=0}^{n}T_{k-1,i}(x_{p}) \to s \quad as \ n \to \infty, uniformly \ in \ p.$$

©International Journal of Engineering Sciences & Management Research

Thus the space f_{k-1} may be regarded as the case $q = \infty$ of space $[f_k]_q$. It is also easy to show

byHÖlder's inequality, that if (2) is true for some q, it holds for any smaller q.

Further for any s, we have

$$\begin{cases} \frac{1}{n+1} \sum_{i=0}^{n} |T_{k-1,i}(x_{p-1}) - s|^{q'} \end{cases}^{1/q'} \leq \begin{cases} \frac{1}{n+1} \sum_{i=0}^{n} |T_{k-1,i}(x_{p-1}) - s|^{q} \end{cases}^{1/q} \\ \leq \sup_{i} \begin{cases} \frac{1}{n+1} |T_{k-1,i}(x_{p-1}) - s| \end{cases} \end{cases}$$
(4)

whenever $0 < q' < q < \infty$, k > 0.

It is worth mentioning that (as may easily be proved by (3) and (4)),

$$[f_k]_\infty \subset [f_k]_q \subset [f_k]_{q'}$$

PRELIMINARY RESULTS

First we note that the coefficients $A_n^{\alpha,\delta}$ are defined by the following power series:

$$\frac{1}{(1-x)^{\alpha+1}} \left(\log \frac{a}{1-x} \right)^{\delta} = \sum_{n=0}^{\infty} A_n^{\alpha,\delta} x^n, a > 2$$

From this it follows that

$$\sum_{n=0}^{n} A_{\nu}^{\alpha,\delta} A_{n-\nu}^{\alpha',\delta'} = A_{n}^{\alpha+\alpha'+1,\delta+\delta'}$$
(5)

Before proving our results, we first prove the following lemmas.

Lemma 1 suppose that k' > k > 0. Then

$$T_{k',n}(x_p) = \frac{1}{A_n^{k',\delta}} \sum_{l=0}^n A_{n-l}^{k'-k-1,0} A_l^{k,\delta} T_{k,l}(x_p)$$
(6)

Proof we see that (6) is equal to

$$\frac{1}{A_n^{k',\delta}} \sum_{l=0}^n A_{n-l}^{k'-k-1,0} A_l^{k,\delta} \sum_{i=0}^l A_{l-i}^{k-1,\delta} x_{i+p} \,. \tag{7}$$

Inverting the order of summation, the expression (6) becomes using special case of (5)

$$\frac{1}{A_{n}^{k',\delta}}\sum_{i=0}^{n}x_{i+p}\sum_{l=i}^{n}A_{n-l}^{k'-k-1,0}A_{l-i}^{k-1,\delta} = \frac{1}{A_{n}^{k',\delta}}\sum_{i=0}^{\infty}x_{i+p}A_{n-i}^{k'-1,\delta} = T_{k',n}(x_{p})$$

This proves lemma.

©International Journal of Engineering Sciences & Management Research

Lemma 2 Suppose that $t_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}$, where $s_n = a_0 + a_1 + \dots + a_n$

If $\lim_{n\to\infty} s_n$ exists, then $\lim_{n\to\infty} t_n$ exists and has the same value.

This lemma is well known.

SOME RESULTS

Theorem 1 Suppose that k' > k > 0. Then

$$f_k \subset f_{k'}$$

Proof From (6), we have

$$T_{k',n}(x_p) = \frac{1}{A_n^{k'}} \sum_{l=0}^n A_{n-l}^{k'-k-1,0} A_l^{k,\delta} T_{k,l}(x_p)$$
(9)

It follows that

$$\overline{\lim_{n \to \infty}} |T_{k',n}(x_p)| \le \overline{\lim_{n \to \infty}} |T_{k',n}(x_p)|$$
(10)

We deduce from (10) that k' > k > 0 and

 $\lim_{n \to \infty} T_{k,n}(x_p) = 0, \text{ then } \lim_{n \to \infty} T_{k',n}(x_p) = 0$ Consequently for k' > k > 0

$$\overline{\lim_{n \to \infty}} T_{k',n}(x_p) \quad exists \ uniformly \ in \ p.$$

whenever
$$\overline{\lim_{n \to \infty}} T_{k',n}(x_p) \quad exists \ uniformly \ in \ p.$$

In other words $f_k \subset f_{k'}$.

This proves Theorem 1.

Theorem 2 $[f_k]_q \subset f_k$ and $[f_k]_q - \lim x = s \Rightarrow f_k - \lim x = s$.

Proof To prove theorem, we observe that if $x \in [f_k]_q$ for any q such that

 $1 \leq q \leq +\infty,$ then $x \in [f_k]$. We may suppose that q=1, i.e.

$$\lim_{n\to\infty}\frac{1}{n+1}\sum_{i=0}^{n} |T_{k-1,i}(x_p)-s| = 0, \quad uniformly \text{ in } p,k \ge 1.$$

Now the result for q = 1 follows from the following inequality:

[Singh*, 4.(2):February -2017]

International Journal OF Engineering Sciences & Management Research

$$\left|\sum_{i=0}^{n} T_{k-1,i}(x_{p-1}) - s\right| \le \sum_{i=0}^{n} |T_{k-1,i}(x_{p-1}) - s|$$

Now suppose that q > 1

We have from Lemma 1

$$T_{k,n}(x_p) = \frac{1}{A_n^k} \sum_{l=0}^n A_l^{k-1} T_{k-1,l}(x_p) - s$$

And so

$$|T_{k,n}(x_p) - s| \le \frac{1}{A_n^k} \sum_{l=0}^n A_l^{k-1} |T_{k-1,l}(x_p) - s|$$

Now applying HÖlder's inequality we have

$$\begin{aligned} |T_{k,n}(x_p) - s| &\leq \frac{1}{A_n^k} \left(\sum_{l=0}^n |T_{k-1,l} - s|^p \right)^{1/p} \left(\sum_{l=0}^n A_l^{(k-1)p'} \right)^{1/p'} \\ &= o(n^{-k}) \ o\left(n^{\frac{1}{p}}\right) \ o\left(n^{\frac{p'(k-1)+1}{p'}}\right) = o\left(n^{-k+\frac{1}{p}+k-1+\frac{1}{p'}}\right) \\ &= o(n^{-k+k}) \qquad = o(1) \end{aligned}$$

Hence $|T_{k-1,l}(x_p) - s| = o(1)$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n+1} \sum_{i=0}^{n} T_{k,i}(x_p) = s \text{ uniformly in } p, k \ge 0 \text{ (by Lemma 2)}$$

Hence $x \in f_k$

This proves Theorem 2.

Theorem 3 if q > 1, $k' > k > \frac{1}{q}$ and $k \ge 0$, then $[f_{k+1}]_q \subset f_{k'}$.

Proof We may evidently suppose that s = 0. Let $x \in [f_{k+1}]_q$. By Lemma 1, we have

$$|T_{k',n}(x_p)| \leq \frac{1}{A_n^{k'}} \sum_{l=0}^n A_{n-l}^{k'-k-1} A_l^k |T_{k,n}(x_p)|.$$

Applying HÖlder's inequality with indices q and q', we get

$$\begin{aligned} |T_{k',n}(x_p)| &\leq \frac{1}{A_n^{k'}} \left\{ \sum_{l=0}^n A_l^k |T_{k_{-l}}(x_p)|^q \right\}^{1/q} \left\{ \sum_{l=0}^n A_l^k (A_{n-l}^{k'-k-1})^{q'} \right\}^{1/q'} \\ &\leq \frac{1}{A_n^{k'}} \left(A_n^k \right)^{\frac{1}{q}} \sum_{l=0}^k |T_{k_{-l}}(x_p)|^q o(1) \left(\sum_{l=0}^n A^k (n-l)^{q'(k'-k-1)} \right)^{1/q'}, \\ &= o(1)n^{-k'} \cdot n^{\frac{k}{q}} \cdot n^{\frac{1}{q}} o(1) \cdot o(1) \left(n^{k+q'(k'-k-1)+1} \right)^{\frac{1}{q}}, \text{ using } k' > k > \frac{1}{q} \\ &= o(1)n^{-k'+\frac{k}{q}+\frac{1}{q}+k'-k-1+\frac{1}{q'}} \\ &= o(1)n^{\frac{k}{q}+\frac{k}{q}-k} \left(\text{using } \frac{1}{q} + \frac{1}{q'} = 1 \right) \\ &= o(1)n^{k-k} = o(1) \end{aligned}$$

Hence $T_{k',n}(x_p) = o(1)$ as $n \to \infty$ uniformly in p.

Applying Lemma 2, we see that

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{i=0}^{n} T_{k',i}(x_p) = o(1) \quad as \ n$$
$$\to \infty \ uniformly \ in \ p.$$

Hence $x \in f_{k'}$.

This proves Theorem 3.

We generalize the definition of the space of M-convergent sequences defined by Maddox [3], and we also generalize the Theorem 1 of Maddox [3] and Theorem 2 of Das and Mishra [2].

DEFINITION

Let d be any sublinear functional on l_{∞} . We write $\{l_{\infty}, d\}$ to be the set of all linear functional

 $\eta_k \operatorname{on} l_{\infty}$ such that $\eta_k > d$, that $\operatorname{is} \eta_k(x) \le d(x)$, for all $x \in l_{\infty}$. We now define an M_k -limit

on l_{∞} to be a linear functional η_k on l_{∞} , such that

$$\eta_k(x) \le Q_k(x) \qquad for \ all \ x \in l_{\infty}$$

where $Q_k(x)$ is defined by (1).

Since $\eta_k(x) \le Q_k(x)$ every Banach limit is also an M_k -limit.

It is natural to define $x \in l_{\infty}$ to be M_k -convergent to s if and only if

©International Journal of Engineering Sciences & Management Research

 $\eta_k(x-s) = 0$ for all M_k -limits $\eta_k(11)$

Let $[M_k]$ denote the space of all M_k -convergent sequences.

Theorem 4 If $x \in l_{\infty}$ then

Proof If (2) holds, then for each $\epsilon > 0$ there exists *r* such that

$$\limsup_{n} \frac{1}{r} \sum_{j=1}^{r} |T_{k-1,n}(x_j) - s| < \epsilon,$$

Hence $Q_k(x-s) \leq \epsilon$. Now if M_k is any M_k -limit then $M_k(y) \leq Q_k(y)$ on l_{∞} , and

$$-M_k(y) = M_k(-y) \le Q_k(-y) = Q_k(y), \text{ so } |M_k(y)| \le Q_k(y).$$

Hence $|M_k(x-s)| \le \epsilon$, which implies $x \in [M_k]$

Since every Banach limits is also on M_k -limit the inclusion $[M_k] \subset f_k$ is immediate.

This completes the proof.

Theorem 5
$$[f_k] = [M_k]$$

Proof In view of the inclusions $[f_k] \subset [M_k] \subset f_k$, it is enough to show that $[M_k] \subset [f_k]$. Definition for $x \in l_{\infty}$,

$$I_k(x) = \overline{\lim_{r}} \quad \sup_{n} \frac{1}{r} \sum_{j=1}^{r} |T_{k-1,n}(x_j)|$$

Then by corollary of theorem 1, proved by Das and Mishra [2], writing $|x| = |(x_n)|_{n \ge 0}$ in place of $x = (x_n)$, we obtain $Q_k(x) = I_k(x)$.

Now, let $x \in [M_k]$, so there exists a (real) such that

$$\eta_k(x-s) = 0 \text{ for all } \eta_k(x) \in \{l_{\infty}, I_k\}.$$

By the Hahn-Banach Theorem, there exists $\eta_0(x) \in \{l_{\infty}, I_k\}$

such that

$$\eta_0(x-s) = I_k(x-s).$$

Hence, $I_k(x - s) = 0$, which implies that $x \in [f_k]$.

This completes the proof.

I thank prof. G.Das for his encouragement.

REFERENCES

- Banach, S.: Theories des operationesLinearies. Warsaw 1932.
 Das, G. and Mishra, S.L.: Invariant linear functionals and Infinite matrices ,Ind.Jour pure and appl. math. 16, (1985), (1307-1316).
- 3. Maddox, I.J. .: On strong almost Convergence, math. proc. Camb . phil .soc. 83 (1979), 345-350