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ABSTRACT
The object of the present paper is to introduce almost convergence by means of generalised binomial
coefficients and definenew sequence spaces and various inclusions and topological properties.

STRONGLY ALMOST CONVERGENT SEQUENCES

Let T n (xp ) be defined by
I[X,H_p' k = O

Tk,n(xp) e 4 1 p+n

k—-1,6
th Ap+n_vxv, k>0
n v=p

A sequence x = {x,, }is said to be strongly almost convergent to a number s if

n
1
ZZ |Tk_1,i (xpj) — s| - 0asn — o uniformly inp.
i=1 §
: : 1
where Q (x) = inf lim sup—z |Tkn (xp.)| (D
Plrwly MO szl ’ J
We define[fy |4, for ¢ = 1 and k = 1the spaces of strongly f} - almost convergent sequences
with index g :
n
q = )% lim ! Ty1ilx, )—s = 0, uniformly inp ;. 2
k n-oon + 14 4
=
We observe that
[ & Yq
. q
b et )=l'] el (s, )= ®
1=

This implies that T, _1 ;(x,, ) — sasi — oo, uniformly in p. it follows immediately, by

Cauchy’s Theorem on limit, that

n

1
- 12; Tk_l,l-(xp ) - s as n— oo, uniformly inp.
1=
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Thus the space fj,_1 may be regarded as the case ¢ = oo of space [f} ] It is also easy to show

byHOlder’s inequality, that if (2) is true for some q, it holds for any smaller q.

Further for any s, we have

1/, 1/
{ & , /q 1 <& . q
Y et )=l ] =Y s )l

|Tie—1i(xp ) — s } (4)

1
<
- Slilp{n+ 1

whenever0 < ¢ < g < o, k > 0.
It is worth mentioning that (as may easily be proved by (3) and (4)),

[filo < [filg © Uily

PRELIMINARY RESULTS

First we note that the coefficients Aﬁ"s are defined by the following power series:

[0¢]

1 a \% 5
(1—x)“+1(log1—x) =2Ag' x,a>2

n=0
From this it follows that

n
ad g0 .8 _ sata +1,6+468
ZAU An—v - An (5)

n=0

Before proving our results, we first prove the following lemmas.

Lemma 1 suppose that k' >k > 0.Then

n

1
Ty n(xp) = Iz ZAk AT () (6)

n [=0
Proof we see that (6) is equal to

n l

k' k k,0 k— 5
AL k=10 g ZA Ly %)
1=0 i=0

1
Ak S
Inverting the order of summation, the expression (6) becomes using special case of (5)

[o¢]

1 '
k' k 10 k 15 k-16 _ ,
k' 5 xl+p A k' 5 xi+p'An—i - Tk ,n(xp)
Ak Z z e Z

i=0

This proves lemma.
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Lemma 2 Suppose that t, = % where s, = ag + a; + -~ + a,

If lim,, o, S, exists, then lim,,_,, t,, exists and has the same value.
This lemma is well known.

SOME RESULTS

Theorem 1 Suppose that k > k > 0. Then

fe <f
Proof From (6), we have
n
T a(iy) =250 AL AT, x,) ©
no1=0
It follows that
Tli_,_r{}olTk',n(xpN = Y}L_TQJT;( ,n(xp)l (10)

We deduce from (10) that k' >k > 0and

imT, (x)=0, thenrli_)_rgoTk',n(xp) =0

n—-oo

Consequently for k' >k > 0
711_)_r£10 Ty » (xp) exists uniformly in p.
whenever r}l_)_r?o Ty (xp) exists uniformly in p.
Inother words  f, < f .
This proves Theorem 1.
Theorem 2 [fi ], € fi. and [fi ], —limx =s = f; —limx = s.
Proof To prove theorem, we observe that if x € [f} ], for any g such that

1<q <+, thenx € [f;] .Wemaysupposethatq =1, i.e.

) 1
lim

n
n-w 1 4 12 |Tk—1,i(xp ) - S| =0, uniformly inp,k = 1.
i=0

Now the result for ¢ = 1 follows from the following inequality:
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n
Z Tk—l,i (xp ) —S
i=o0

n

<> [Ty )=l

i=0

Now suppose that ¢ > 1

We have from Lemma 1

n
1
T nlw) =32 ) AT sy )-s
=0

And so

n
1
TGy ) =5l <= ) AF s ) =l
" 1=0

Now applying HOlder’s inequality we have

n 1/p n 1/ ’
1 , p
|Tk'n(xp ) - Sl = A_k( é |Tk—1,l - S|p) ( E Al(k—l)P )
" =0

1=0
1 p (k=D+1 e lipo1a L
=on o (np> 0 <n p ) =0 <n el >
= o(nk+k) =0(1)

Hence |Tk_1,l (xp ) — s| =0(1)

) 1
= lim

n
nson + 1 Z Tyi(x, ) =s uniformlyin p,k = 0 (by Lemma 2)
L=0

Hence x € f;,

This proves Theorem 2.

Theorem3 ifq > 1,k > k >$ and k = Ojthen[fi 1] < f’

Proof We may evidently suppose that s = 0. Letx € [fi11]4. By Lemma 1, we have

n
1 ,
1Ty )| < = ) A AT ().
n =0

Applying HOlder’s inequality with indices gand q', we get
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n l/q n 1/,
1 ! q
realen N2y atr G} [ st
=0

n =0

n 1/,
1 Lk N :
SFW )qE LAEBIICIES (Z A¥ (n—ya —k—l)) ,
" =0

, ko1 o L , 1
= o(Dn™* .n9.n90(1). 0(1)(nk+4 (k _k_1)+1)q ,using k >k >5

k 1
+k —k—14+—
— 0(1) q q

k k 1 1
= 0(1)nq " (using— +—== 1)
q 4
= o(D)nk* =0(1)
Hence Tk"n(xp) = 0(1) asn — oo uniformly in p.

Applying Lemma 2, we see that

lim
n-on + 1

ZTk l(xp )=0(1) asn
— oo uniformly in p.

Hence x € f}'.

This proves Theorem 3.

We generalize the definition of the space of M-convergent sequences defined by Maddox [3],
and we also generalize the Theorem 1 of Maddox [3] and Theorem 2 of Das and Mishra [2].

DEFINITION
Let dbe any sublinear functional on [.,. We write {l,, d} to be the set of all linear functional
Ny only, such that iy, > d, thatisny (x) < d(x), forall x € l,,. We now define an M, -limit
onl,to be a linear functional 1, on L, such that
nex) <Q,(x) forallxe€l,
whereQ, (x) is defined by (1).
Sinceny, (x) < Q) (x)every Banach limit is also an M, -limit.

It is natural to define x € [, to be M), —convergent to s if and only if
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ne(x—s)=0 for all My-limits n; (11)
Let [M, ] denote the space of all M}, -convergent sequences.
Theorem 4 If x € [ then

Proof If (2) holds, then for each € > 0 there exists 7 such that
r
. 1
limsup= > [T, (5 ) = 5| <e
n
j=1

Hence Q) (x — s) < €. Now if M}, is any M), -limit then M}, (y) < Q (y)on I, and
—M (y) = M (=y) < Qr(=y) = Qk(¥), so IM,(¥)| < Qi ().

Hence | M}, (x — s)| < €, which implies x € [M]

Since every Banach limits is also on M, - limit the inclusion [M,] € f; is immediate.

This completes the proof.

Theorem 5 [fi,] = [M}]

Proof In view of the inclusions [f},] © [M] € f. it is enough to show that [M},] < [f].

Definition for x € [,

.
_ 1
I, (x) =li7m sup—Z|Tk_1,n(xj )|
n T

Then by corollary of theorem 1, proved by Das and Mishra [2], writing |x| = [ (x;,) ;>0 in
place of x = (x,,), we obtain Q}, (x) = I}, (x).
Now, let x € [M,,], so there exists a (real) such that
Ne(x—s) =0 forall ng(x) € {loo, I}, }.
By the Hahn-Banach Theorem, there exists g (x) € {ls, I }
such that
np(x —s) =L (x —s).

Hence, I, (x —s) = 0,
which implies that x € [f}].

This completes the proof.
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