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ABSTRACT 
Sequence alignment is an important problem in computational biology and finding the longest common 

subsequences(LCS) of multiple string sequences is an essential and effective technique in sequence alignment 
problem. In this paper solving LCS problem using dynamic programming method have been proposed with 

reduced time and space complexity. We developed an efficient algorithm to solve the longest common 

subsequence problem, using a new technique that improved the LCS algorithm with time complexity of O(m*n). 

The algorithm takes the advantage over the existing algorithm and improving the performance and tested on 

randomly generated sequences of different length. 

 
 

  

INTRODUCTION 
The simplest form of a sequence similarity analysis is the Longest Common Subsequence (LCS) problem, 

where we eliminate the operation of substitution and allows only insertion and deletion. A subsequence of a 

string v is simply a sequence of characters from v. The longest common subsequence (LCS) problem is one of 

the classical and well-studied problem in computer science which has extensive applications in diverse areas 

ranging from spelling error corrections to molecular biology: a spelling error correction problem tries to find the 

dictionary entry which resembles most a given word; in a file archive we want to store several versions of a 
source program compactly by storing only the original version and construct all other versions from the 

differences to the previous one. In Molecular Biology, we want to compare DNA or protein sequences to learn 

how much similarity between them. All these cases can be seen as an investigation for the "closeness" among 

strings. And an obvious measure for the closeness of strings is to find the maximum number of identical 

characters in them preserving the order of the characters. This, by definition, the longest common subsequence 

of the strings. 

 

Problem 1 ("LCS"). Given two strings X and Y, we want to find out the Longest Common Subsequence of X 

and Y. In this paper we are proposed in several variants of LCS Problem. In the rest of this section we formally 

define the new variants and given some examples. We assume that the two given strings are of equal length. But 

the results can be easily extended to handle two strings of different length. 
 

Definition-1 ("Correspondence Sequence"). Given a string X[1..n] and a subsequence S[1...r] of X, we define 

the correspondence sequence of X and S, C(X, S) = C[1] C[2] . . .C[r] to be the strictly increasing sequence of 

integers. 

 

Definition-2 ("Fixed Gapped Correspondence Sequence"). A correspondence sequence of a string X of length n 

and one of its subsequences S of length r is said to be a Fixed Gapped Correspondence Sequence with respect to 

a given integer K if and only if we have C[i] - C[i - 1] ≤ K + 1 f or all 2 ≤ i ≤ r. We sometimes use CFG(K) to 

denote a Fixed Gapped Correspondence Sequence with respect to K. 

 

Definition-3 ("Elastic Gapped Correspondence Sequence"). A correspondence sequence of a string X of length 

n and one of its subsequences S of length r is said to be an Elastic Gapped Correspondence Sequence with 
respect to a given integer K1 and K2, K2 > K1 if and only if we have K1 < C[i] - C[i - 1] ≤ K2 + 1 for all  

2 ≤ i ≤ r. We sometimes use CEG(K1,K2) to denote an Elastic Gapped Correspondence Sequence with respect 

to K1 and K2. 



[Kumar*, 4(5): May, 2017]  ISSN 2349-6193 

  Impact Factor: 2.805 

IJESMR 
International Journal OF Engineering Sciences &Management Research 

http: // © International Journal of Engineering Sciences & Management Research 

[2] 

 

Definition-4 ("Fixed Gapped Common Subsequence and Elastic Gapped Common Subsequence"). Suppose that 

we are given two strings X[1...n] and Y [1...n] and an integer K. A common subsequence S[1...r] of X and Y is a 

Fixed Gapped Common Subsequence, if there exist Fixed Gapped Correspondence Sequences CFG(K)(X, S) 

and CFG(K)(Y, S). Elastic Gapped Common Subsequences can be defined analogously 

 

LITERATURE REVIEW 
The longest common subsequence problem for k strings (k > 2) was first shown to be NP-hard [25] and later 

proved to be hard to be approximated [19]. The restricted but probably the more studied problem that deals with 
two strings has been studied extensively [26,18,17,16]. The classic dynamic programming solution to LCS 

problem, invented by Wagner and Fischer [35], has O(n2) worst case running time. Masek and Paterson [26] 

improved this algorithm using the "Four-Russians" technique to reduce the worst case running time to 

(n2/logn)2, Since not much improvement in terms of n can be found in the literature. However, several 

algorithms exist with complexities depending on other parameters. For example Myers in [25] and Nakatsu et al. 

in [24] presented an O(n) algorithm, where the parameter D is the simple Liechtenstein distance between the 

two given strings [22]. Another interesting and perhaps more relevant parameter for this problem is R. Hunt and 

Szymanski [18] presented an algorithm running in O((R + n) log n). They have also cited applications where  

R ~ n and thereby claimed that for these applications the algorithm would run in O(nlogn) time. For a 

comprehensive comparison of the well-known algorithms for LCS problem and study of their behaviour in 

various application environments are found in [9]. In [8], the authors find the LCS using Java threads, they 

claim O(m*n) for best case. 
 

LCS ALGORITHM 
In LCS problem, where we eliminate the operation of substitution and allow only insertions and deletions. A 

Subsequence of a string v is simply an ordered sequence of characters from v. For example, if v = ATTGCTA, 

then AGCA and ATTA are subsequences of v whereas TGTT and TCG are not. Where ATGC denotes Adenine, 

Thymine, Cytosine. Formally, we define the common subsequence of strings. 

 

1 ≤ i1 ≤ i2 < . . . ik ≤ n   (1) 

And a sequence of positions in w, 
 

1 ≤ j1 ≤ j2 < . . . jk ≤ m   (2) 

such that the symbols at the corresponding positions in v and w coincide: 

 

vit = wjt for 1 ≤ t ≤    (3) 

for example, TCTA is common to both ATCTGAT and TGCATA 

 

Alignment 

A T–C–T G A T 

–T G C A T–A– 

 
Let si,j to be length of an LCS between v1...vi, the i-prefix of v and w1...wj, the j-prefix of w. Clearly,  

si,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ i ≤ n one can see that si,j satisfies the following recurrence: 

 

si,j = max 

si-1,j

si,j-1

si-1,j-1+1,   if vi=wj

   (4) 

 

Note that one can "rewrite" these recurrencesby adding some zeros here and there as 

 

si,j=max 

si-1,j+0

si,j-1+0

si-1,j-1+1,   if vi=wj

  (5) 
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This recurrence for the LCS computation is like the recurrence given at the end, if we were to build a 

particularly gnarly version of Manhattan and gave horizontal and vertical edges weights of 0, and set the 

weights of diagonal edges equal to + 1. 

 

DNA OPERATIONS BASED ALGORITHMS 
In this paper, we proposed new approaches to study Longest Common Subsequences algorithms searches for all 

common sequence string in different input pattern sequences. We propose an efficient algorithm added to s 

distance from the last matched for computing similarity between two strings. Let s(v,w) be the length of the 

longest common subsequence of v and w, then the edit distance between v and w under the assumption that only 
insertions and deletions are allowed is d(v,w) = n +m - 2s(v,w), and corresponds to the minimum number of 

insertions and deletions needed to transform v into w. (bottom) presents an LCS of length 4 for the strings v = 

ATCTGAT and w = TGCATA and a shortest sequence of two insertions and three deletions transforming from 

v into w. Every common subsequence corresponds to an alignment with no mismatches. This can be obtained 

simply by removing all diagonal edges from the edit graph whose characters do not match, thus transforming it 

into a graph. 

 

 
Fig 1 :Computing similarity s(V,W) = 4 V and W have a subsequence TCTA in common 

 

 
Fig 2 :LCS Edit Graph 
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PROPOSED ALGORITHM 
We propose an efficient algorithm for computing similarity between two strings. Let s to represent our dynamic 

programming table, the data structure that we use to fill in the dynamic programming recurrence. The length of 

an LCS between v and w can be read from the element(n,m) of the dynamic programming table, but to 

reconstruct the LCS from the dynamic programming table, one must keep some additional information about 

which of the three quantities, si1,j , si,j1, or si1,j1 + 1, corresponds to the maximum in the recurrence for 
si,j.The computation of the similarity score s(v,w) between v and w, while the table on the right presents the 

computation of the edit distance between v and w under the assumption that insertions and deletions are the only 

allowed operations. 

 

Algorithm-1 depicts the process of two string sequences in efficient multiple longest common subsequences 

 

functionLCS(A,B)  Where A – array, B- array 

LCS[][] := [A.length +1] [A.length +1] 

soln[][] := [A.length +1] [A.length +1] 

res := null; 

for i := 0 to B.lengthdo 
 LCS0,i:= 0 

soln0,i:= “0” 

 end for 

for i := 0 to A.lengthdo 

 LCSi,0:= 0 

solni,0 := “0” 

 end for 

 

 for i := 1 to A.lengthdo 

  for j:= 1 to B.lengthdo 

    

if A[i-1] == B[j-1] then 
    LCSi,j := LCS[i-1][j-1] + 1 

    solni,j:= “Diagonal” 

   else 

    LCSi,j := max(LCS[i-1][j] 

   endif 

   ifLCSi,j== LCSi-1,j then 

    solni,j:= “Top” 

   else 

    solni,j:= “Left” 

   endif 

  endfor 

 endfor 

end function 

 

Algorithm-2 Backtracking Pointers and stored three values up, right and diagonal in an Multidimensional array 

 

while x! := “0” then 

  ifsolna,b== “Diagonal” then 

   a := a - 1 

   b := b - 1 

  else 

   b := b - 1 

   a := a - 1 

  endif 

  return LCS[A.length][B.length] 

end while 
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String A : HUMAN 

String B : CHIMPANZEE 

 
Fig 3 :Output for Efficient LCS Algorithm 

 

 
Fig 4 :Multidimensional Array representation for efficient LCS Algorithm 

 

 
Fig 5 :Multidimensional Array representation for diagonal edges 
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Fig 6 :Multidimensional Array representation for Left edges 

 

 
Fig 7 :Multidimensional Array representation for Top edges 

 
Time Complexity 

 

The time complexity of Algorithm1 can be analyzed in two phases is and it is O(m*n) 

Therefore at its best case 

T(LCS) = max((O((n/L) and O(levelnumber)), O(|LCS|)). 
At its average and worst case 

T(LCS) = max((O((n/M) + O((n/L)+n)) and O(levelnumber)), O(|LCS|). 

 

CONCLUSION AND FUTURE ENHANCEMENT 
In this paper, we proposed an algorithm for finding similarity between two strings. It calculates the longest 

common subsequence (LCS) by avoiding unnecessary comparisons that reduces its performance. The running 

time is better than dynamic programming based algorithm and it is due to time control parameter. The proposed 
algorithm is tested on 50 samples with two input strings and randomly selected in pentium processor machines 

as well as is shows good results for the algorithm. In future the algorithms is implemented in Multiple Longest 

Common sequences, which will also have many applications 
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