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ABSTRACT 
In this paper the idea t of vague matrix is extended in the field of vague block matrix and discussed some of 

their relational operations on vague block matrices. 

 

 

INTRODUCTION 
The fuzziness was mathematically described for the first time by L. A. Zadeh[10] in his classical paper in the 

year 1965. The idea of fuzzy matrix was presented by Thomason[9] plays a vital role in scientific development. 

The fuzzy matrices has been employed in many approaches to model the diagnostic and decision making 

process .The fuzzy matrix [3,4,6] have been proposed to represent fuzzy relation in a system based on fuzzy set 

theory. Many authors have exhibited a number of results on fuzzy matrices. Pal and Shyamal [7,8] introduced 

two new operators on fuzzy matrices and shown several properties of them. In this paper, we introduce the 

concept of vague block matrix and defined various forms of vague block matrix and also derived some of the 

properties of vague  direct sum,  vague Kronecker sum and vague Kronecker product of vague block matrix. 

 

PRELIMINARIES 
 

Definition 2.1:[2] A vague set A in the universe of discourse U is characterized by two membership functions 

given by: 

(i) A true membership function ]1,0[: UtA  and 

(ii) A false  membership function ]1,0[: Uf A  

where )(xtA is a lower bound on the grade of membership of x derived from the “evidence for x”, )(xf A is a 

lower bound on the negation of x derived from the “evidence for x”, and 1)()(  xfxt AA . Thus the grade of 

membership of u in the vague set A is bounded by a subinterval )](1),([ xfxt AA   of [0,1]. this indicates that 

if the actual grade of membership of x is µ(x), then, )(1)()( xfxxt AA   .The vague set A is written as 

  UuxfxtxA AA  /)(1),(, where the interval )](1),([ xfxt AA  is called the vague value of x in 

A, denoted by )(xVA . 

 

Definition 2.2:[1] Let A and B be VSs of the form   XxxfxtxA AA  /)(1),(,  and

  XxxfxtxB BB  /)(1),(,  Then 

(i) BA  if and only if )()( xtxt BA   and )(1)(1 xfxf BA  for all xX 

(ii) A=B if and only if BA  and AB   

(iii)  XxxtxfxA AA

c  /)(1),(,  

(iv)     XxxfxfxtxtxBA BABA  /)(1),(1min,)(),(min,  

(v)     XxxfxfxtxtxBA BABA  /)(1)(1,)()(,  

For the sake of simplicity, we shall use the notation AA ftxA  1,, instead of 

  XxxfxtxA AA  /)(1),(, . 

Definition 2.3:[5] A vague matrix A of order nm is defined as nmijij ]]f1,t[,x[A  e the function 

]1,0[X:t ij   and ]1,0[X:f ij  define the degree of truth membership function and the degree of false 
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membership function of ijx  in A respectively satisfying the condition 1ft0 ijij  for all i,j. The value of 

     xfxt1x AijAijAij   is called the vague hesitation degree of the element Xx  respectively to 

the vague matrix A. For simplicity, we write nmij ]a[A   where ]a,a[a )fi(ij)t(ijij  . 

 

Vague block matrices: 

 

Definition 3.1: A vague submatrix of a vague matrix of order greater than or equal to 1 is obtained by deleting 

some rows or some columns or both( not necessarily consecutive) or neither. 

 

Remark 3.2: A vague matrix itself is its vague submatrix. The maximum number of vague submatrices of an 

mn vague matrix is )12)(12( mn  . 

 

Definition 3.3: A  vague submatrix of order (n-r) obtained by deleting r rows and columns of an n square vague 

matrix is called vague principal submatrix. The first order principal vague submatrices obtained from the 

following third order vague matrix























]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

)f1(33)t(33)f1(32)t(32)f1(31)t(31

)f1(23)t(23)f1(22)t(22)f1(21)t(21

)f1(13)t(13)f1(12)t(12)f1(11)t(11

are 

   ]a,a[,]a,a[ )f1(12)t(12)f1(11)t(11   and  ]a,a[ )f1(13)t(13   . Second order vague submatrices are














]a,a[]a,a[

]a,a[]a,a[

)f1(22)t(22)f1(21)t(21

)f1(12)t(12)f1(11)t(11
, 













]a,a[]a,a[

]a,a[]a,a[

)f1(33)t(33)f1(32)t(32

)f1(23)t(23)f1(22)t(22
,














]a,a[]a,a[

]a,a[]a,a[

)f1(33)t(33)f1(31)t(31

)f1(13)t(13)f1(11)t(11
. Third order vague submatrix is the matrix itself.  

 

Definition 3.4: A vague submatrix of order (n-r) obtained by deleting last r rows and columns of an n square 

vague matrix A is called leading principal vague submatrix. The first order leading principal vague submatrix is 

 ]a,a[ )f1(11)t(11  . The second order leading principal vague submatrix of the above vague matrix is 














]a,a[]a,a[

]a,a[]a,a[

)f1(22)t(22)f1(21)t(21

)f1(12)t(12)f1(11)t(11
. 

 

Definition 3.5: The vague matrix whose elements are blocks obtained by partitioning is called vague block 

matrix. Here a vague matrix is divided or partitioned into smaller vague matrices called blocks or cells with 
consecutive rows and column separated by dotted horizontal lines between rows and vertical lines between 

columns. Thus  















































2221

1211

)f1(34)t(34)f1(33)t(33)f1(32)t(32)f1(31)t(31

)f1(24)t(24)f1(23)t(23)f1(22)t(22)f1(21)t(21

)f1(14)t(14)f1(13)t(13)f1(12)t(12)f1(11)t(11

PP

PP

]a,a[]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[]a,a[

A















 

where  ]a,a[]a,a[P )f1(12)t(12)f1(11)t(1111   ,  ]a,a[]a,a[P )f1(14)t(14)f1(13)t(1312  ,















]a,a[]a,a[

]a,a[]a,a[
P

)f1(32)t(32)f1(31)t(31

)f1(22)t(22)f1(21)t(21

21 and 













]a,a[]a,a[

]a,a[]a,a[
P

)f1(34)t(34)f1(33)t(33

)f1(24)t(24)f1(23)t(23

31 . 
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Definition 3.6: The transpose of vague block matrix is the transpose of both blocks and constituent blocks. 











T

22

T

21

T

12

T

11T

PP

PP
A . 

Definition 3.7: If the number of rows and the number of columns of blocks are equal then the matrix is called 

square vague block matrix. Thus the partitioned vague matrix, 

































]a,a[]a,a[]a,a[]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[]a,a[]a,a[]a,a[

A

)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11

)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11

)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11

)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11)f1(11)t(11











  











232221

131211

AAA

AAA
 is a square vague block matrix since all ijA ’s are square blocks. 

 

Definition 3.8: If a square vague block matrix is such that the blocks ]]0,0[[A ij   for all ji   then the 

vague matrix A is said to be a diagonal vague block matrix. Thus 








0A0

00A

12

11
, where ]]0,0[[0  is a 

diagonal vague block matrix. 

 

 Theorem 3.9: If nmij ]a[A  and pnij ]b[B  are two vague matrices such that pmij ]c[CAB  then 

the j-th column of C is jAB , where 





























]b,b[

]b,b[

]b,b[

B

)f1(nj)t(nj

)f1(j2)t(j2

)f1(j1)t(j1

j 
 are the column partition of vague matrix B. 

 

Proof: Let vague matrix B of order pn be partition into p column vectors )1n(  vague matrices as 

]BBBB[B pj21   where j=1,2,3…,p. to find a column of the product AB. From the 

product rule of the vague matrices, the elements of the product is, 

  n,...,2,1jandm,...,2,1i,}]b,a(min{max},b,a(min{max[c )f1(ik)f1(ik
k

)t(ik)t(ik
k

ij   , where 

     
nm)f1(ik)t(ikpn)f1(ik)t(iknm)f1(ik)t(ik ]c,c[C,]b,b[B,]a,a[A
   and C=AB.  

 Therefore j-th column of C is obtained by giving the values 1,2…,m to I and it is, 





























}]b,a(min{max},b,a(min{max[

}]b,a(min{max},b,a(min{max[

}]b,a(min{max},b,a(min{max[

C

)f1(kj)f1(mk
k

)t(kj)t(mk
k

)f1(kj)f1(k2
k

)t(kj)t(k2
k

)f1(kj)f1(k1
k

)t(kj)t(k1
k

j 
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.p,...,2,1j,

]b,b[

]b,b[

]b,b[

]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

)f1(nj)t(nj

)f1(j2)t(j2

)f1(j1)t(j1

)f1(mn)t(mn)f1(2m)t(2m)f1(1m)t(1m

)f1(n2)t(n2)f1(22)t(22)f1(21)t(21

)f1(n1)t(n1)f1(12)t(12)f1(11)t(11



































































p,...,2,1j,ABj  . Hence the theorem 

 

Theorem 3.10: Let A be an nm  vague matrix and B be an pn vague matrix. Let B(or A) be partitioned 

into two blocks by column partitioning only. Then the product AB is also partitioned into two blocks of same 

column(row) partitioning. 

 

Proof: Let  21 BBB   where 1B is of order tn and 2B is of order )tp(n  vague matrix. Then 

 p)1t(t21 bbbbbAAB    where 





























]b,b[

]b,b[

]b,b[

b

)f1(nj)t(nj

)f1(j2)t(j2

)f1(j1)t(j1

j 
, 

   21p)1t(t21 ABABAbAbAbAbAb    . Hence the proof. 

 

Operations on vague block matrix 3.11: 

 

Addition: The conformal vague matrices can be added by block as addition of two vague matrices of same 

dimensions. 





























pqpq2p2p1p1p

q2q222222121

q1q112121111

BABABA

BABABA

BABABA

BA









 

 
Scalar multiplication: In scalar multiplication the vague block matrix is multiplied by a scalar. That is each 

block of partition vague matrix is multiplied by scalar. That is,





























pq2p1p

q22221

q11211

AAA

AAA

AAA

A









. 

 

Theorem 3.12: If AB=C the vague submatrix containing rows r21 i,....,i,i  and s21 j,....,j,j  of C is equal to 

the product of the vague submatrix with these rows of A and the vague submatrix with these columns of B. 

Proof: Let  
nm)f1(ij)t(ij ]a,a[A

  and  
pn)f1(ij)t(ij ]b,b[B

 be two vague matrices. Then 

  





 


 }]b,a(min{max},b,a(min{max[]c,c[C )f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j
)f1(ij)t(ij , where i=1,2,…,m and 

k=1,2,…,p. Now the vague submatrix ikC of vague matrix C with rows r21 i,....,i,i  and columns s21 j,....,j,j  

is obtained by replacing row i and column k of C by these rows and columns. It is  

)1........(....................}]b,a(min{max},b,a(min{max[C )f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j
ik 





 


, 
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where r21 i,....,i,ii   and columns s21 j,....,j,jk  . Again the product of the given vague submatrices iA

and kB of vague matrix A nad B respectively is 

sn
)f1(rnj)t(rnj)f1(rnj)t(rnj)f1(rnj)t(rnj

)f1(j2)t(j2)f1(j2)t(j2)f1(j2)t(j2

)f1(nj)t(j1)f1(j1)t(j1)f1(j1)t(j1

nr
)f1(nri)t(nri)f1(2ri)t(2ri)f1(1ri)t(1ri

)f1(ni)t(ni)f1(2i)t(2i)f1(1i)t(1i

)f1(ni)t(ni)f1(2i)t(2i)f1(1i)t(1i

ki

]b,b[]b,b[]b,b[

]b,b[]b,b[]b,b[

]b,b[]b,b[]b,b[

]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

]a,a[]a,a[]a,a[

BA

222222

111111

222222

111111









































































 













































}]b,a(min{max},b,a(min{max[}]b,a(min{max},b,a(min{max[

}]b,a(min{max},b,a(min{max[}]b,a(min{max},b,a(min{max[

}]b,a(min{max},b,a(min{max[}]b,a(min{max},b,a(min{max[

)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j
)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j

r

)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j
)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j

)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j
)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j









 

)2(..............................}]b,a(min{max},b,a(min{max[
sr

)f1(jk)f1(ij

n

1j
)t(jk)t(ij

n

1j



 





  

where r21 i,....,i,ii   and columns s21 j,....,j,jk  . Therefore the relation (1) and (2) together gives the 

results. 

 

Vague direct sum:  

 

Definition 3.14: Let r21 A,.......,A,A be square vague matrices of orders r21 m,....,m,m respectively. The 

diagonal vague matrix, 

)m........mm(r

2

1

r21

r21

A00

0A0

00A

)A,.......,A,A(diag































 

is called the vague direct sum of the square vague matrices r21 A,.......,A,A and is expressed by

r21 A......AA   of order )m....mm( r21  . It is also called the vague block diagonalize form. 

 

Properties of vague direct sum: 

Vague direct sum of vague matrices possesses the following algebraic properties: 
1. Commutative property: Commutative property does not hold of the square vague matrices.  

Let A and B be two square vague matrices. Then the vague direct sum of A and B are 











B0

0A
BA  and 










A0

0B
AB . It is obvious that, ABBA  . 
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2. Associative property: Let A, B and C be three square vague matrices. Then D
B0

0A
BA 








 . 

Now,  



























C00

0B0

00A

C0

0D
CDC)BA( . Similarly, E

C0

0B
CB 








 . Now, 



























C00

0B0

00A

E0

0A
EA)CB(A . Therefore, 

)CB(AC)BA(  . Hence, the associative law holds for direct sum of the vague block 

matrix. 

3. Mixed sum: )DC()BA()DC()BA(  , if the addition are conformable 

corresponding vague block matrices. By the definition of the vague block matrix and vague matrix 

addition,

 
)DB()CA(

D0

0B

C0

0A

)DC(0

0)BA(
)DC()BA( 






























  

4. Vague matrix multiplication of vague direct sum: )BD()AC()DC)(BA(  if the 

multiplication is conformable for vague matrix. 

)BD()AC(
BD0

0AC

D0

0C

B0

0A
)DC)(BA( 


























  

5. Transposition of vague matrices: 
TTT BA)BA(  . Since, 










B0

0A
BA then 

TT

T

TT

T BA
B0

0A

B0

0A
)BA( 

















 . 

 

Vague Kronecker product of vague matrices 3.15: 

 Let  
nm)f1(ij)t(ij a,aA

 and  
qp)f1(ij)t(ij b,bB
 be two rectangular vague matrices. Then 

the vague Kronecker product of A and B, denoted by BA is defined as the partitioned vague matrix 

nqmpmn2m1m

n22221

n11211

BaBaBa

BaBaBa

BaBaBa

BA































where ]a,a[a )f1(ij)t(ijij   for i=1,2,….,m and 

j=1,2,….n. It has mn blocks. The ij th blocks Ba ij of order qp . 

 

Vague Kronecker product of two vague column vectors 3.16: 

 Let 
T

)f1(n)t(n)f1(2)t(2)f1(1)t(1 ]x,x................x,xx,x[x    and 

T

)f1(n)t(n)f1(2)t(2)f1(1)t(1 ]y,y................y,yy,y[y   be two column vague vectors. 

Then by definition of vague kronecker product, we have 
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1nm)f1(m)t(m)f1(n)t(n

)f1(1)t(1)f1(n)t(n

)f1(m)t(m)f1(2)t(2

)f1(1)t(1)f1(2)t(2

)f1(m)t(m)f1(1)t(1

)f1(1)t(1)f1(1)t(1

)f1(n)t(n

)f1(2)t(2

)f1(1)t(1

]y,y][x,x[

]y,y][x,x[

]y,y][x,x[

]y,y][x,x[

]y,y][x,x[

]y,y][x,x[

y]x,x[

y]x,x[

y]x,x[

yx





































































































 
 

Properties of vague Kronecker product 3.17: 

 Let A, B and C be vague matrices then the vague Kronecker product satisfies the following: 

1. Commutative : The vague Kronecker product is not commutative, ABBA  . 

2. Distributive: If B and C are conformable for addition, then 

CABA)CB(A  ,[left distribution] 

ACABA)CB(  ,[right distribution] 

3. Associative: C)BA()CB(A  . 

4. Transposition: 
TTT BA)BA(  . 

5. Trace: )TrB)(TrA()BA(Tr  . 

6. Two vague column vectors  and , not necessarily of the same order:
TTT  . 

7. 
nm

nnmm )B(det)A(det)BAdet(   . 

 

Vague Kronecker sum 3.18:  

 The vague Kronecker sum of two square vague matrices nnA  and mmB  is defined by              A †

BIIAB nm  , which is an nmnm vague matrix. 

Example 3.19: Let 



















]6.0,3.0[]5.0,2.0[]7.0,1.0[

]6.0,5.0[]6.0,4.0[]6.0,2.0[

]8.0,1.0[]6.0,3.0[]5.0,3.0[

A and 









]6.0,1.0[]5.0,2.0[

]5.0,4.0[]7.0,1.0[
B be two vague 

matrices. Then A † BIIAB 32  . 



































]6.0,3.0[]5.0,2.0[]5.0,2.0[]0,0[]7.0,1.0[]0,0[

]5.0,4.0[]7.0,3.0[]0,0[]5.0,2.0[]0,0[]7.0,1.0[

]6.0,5.0[]0,0[]6.0,4.0[]5.0,2.0[]6.0,2.0[]0,0[

]0,0[]6.0,5.0[]5.0,4.0[]7.0,4.0[]0,0[]6.0,2.0[

]8.0,1.0[]0,0[]6.0,3.0[]0,0[]6.0,3.0[]5.0,2.0[

]0,0[]8.0,1.0[]0,0[]6.0,3.0[]5.0,4.0[]7.0,3.0[

B A† 
















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Some relational operations on vague block matrices: 

 Here we define four special types of reflexivity and irreflexivity of a vague matrices. 

 

Definition 3.20: Let A be a vague matrices of any order then, 

(i) 1R : A is of type-1 reflexive if 1aand1a )f1(ij)t(ij   , for all i=1,2,…,n. 

(ii) 2R : A is of type-2 reflexive if )f1(ij)f1(jj)f1(ii a)aa(   , for all i, j=1,2,…,n. 

(iii) 3R : A is of type-3 reflexive if )t(ij)t(jj)t(ii a)aa(  , for all i, j=1,2,…,n. 

(iv) 4R : A is of type-4 reflexive if )f1(ij)f1(jj)f1(ii a)aa(   and )t(ij)t(jj)t(ii a)aa(  , where 

i, j=1,2,…,n.  

     For irreflexivity, 

(i) 1R : A is of type-1 reflexive if 0aand0a )f1(ij)t(ij   , for all i=1,2,…,n. 

(ii) 2R : A is of type-2 reflexive if )f1(ij)f1(jj)f1(ii a)aa(   , for all i, j=1,2,…,n. 

(iii) 3R : A is of type-3 reflexive if )t(ij)t(jj)t(ii a)aa(  , for all i, j=1,2,…,n. 

(iv) 4R : A is of type-4 reflexive if )f1(ij)f1(jj)f1(ii a)aa(   and )t(ij)t(jj)t(ii a)aa(  , where 

i, j=1,2,…,n.  

 

Theorem 3.21: If vague matrices A and B be reflexive of any type then direct sum of these vague matrices is 

also reflexive of the same type. 

 

Proof: (i) Let vague matrices A and B be type-1 reflexive, then ]1,1[]a,a[ )f1(ii)t(ii    and 

]1,1[]b,b[ )f1(ii)t(ii   . Then the direct sum of these vague matrices A and B be vague block matrix, 











B0

0A
BAS . Now ]1,1[]s,s[ )f1(ii)t(ii   , since diagonal elements in vague block 

matrices S are vague matrices A and B  and diagonal elements in A and B are [<1,1>]. Hence the direct sum S 

of the vague matrices A and B is type-1 reflexive. 

(ii) Let vague matrices A and B be type-2 reflexive, then )f1(ij)f1(jj)f1(ii a)aa(   and

)f1(ij)f1(jj)f1(ii b)bb(   . Then the direct sum of these vague matrices A and B be vague block matrix 

BAS  . Now for A blocks we have  

]m,....,2,1j,m,....,2,1i[as )f1(ij)f1(ij    

)f1(jj)f1(ii aa    [as A is type- 3 reflexive ] 

)f1(jj)f1(ii ss   . 

Now for B blocks we have, 

 ]n,....,2,1q,n,....,2,1p[bs )f1(pq)f1)(qm)(pm(    

)f1(qq)f1(pp bb    [as B is type- 3 reflexive ] 

)f1)(qm)(qm()f1)(pm)(pm( ss   .[as off diagonal blocks are vague zero           

                                                                                                                          matrices] 

Therefore, .nm,.......,2,1l,nm,...,2,1ksss )f1(ll)f1(kk)f1(kl   Hence the direct sum S of 

the vague matrices A and B is type-3 reflexive. 

(iii) Let vague matrices A and B be type-3 reflexive, then )t(ij)t(jj)t(ii a)aa(  and

)t(ij)t(jj)t(ii b)bb(  . Then the direct sum of these vague matrices A and B be vague block matrix 

BAS  . Now for A blocks we have  
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]m,....,2,1j,m,....,2,1i[as )t(ij)t(ij   

)t(jj)t(ii aa   [as A is type- 3 reflexive ] 

)t(jj)t(ii ss  . 

Now for B blocks we have, 

 ]n,....,2,1q,n,....,2,1p[bs )t(pq)t)(qm)(pm(   

)t(qq)t(pp bb   [as B is type- 3 reflexive ] 

)t)(qm)(qm()t)(pm)(pm( ss   .[as off diagonal blocks are vague zero matrices] 

Therefore, .nm,.......,2,1l,nm,...,2,1ksss )t(ll)t(kk)t(kl  Hence the direct sum S of the 

vague matrices A and B is type-3 reflexive. 

(iv) Let vague matrices A and B be type-4 reflexive, then )t(jj)t(ii)f1(jj)f1(ii aa,aa    and 

)t(jj)t(ii)f1(jj)f1(ii bb,bb   . Then the direct sum of these vague matrices A nad B be vague block matrix 

of type-4 reflexive, by results (ii) and (iii). The direct sum of the vague matrices reflexive of any type is also 

reflexive of the same type. 

 

Theorem 3.22: If the vague matrices A and B be type-1 reflexive then the vague Kronecker product of these 
vague matrices is also type-1 reflexive. 

 

Proof: Let vague matrices A and B be type-1 reflexive, then ]1,1[]a,a[ )f1(ii)t(ii    and 

]1,1[]b,b[ )f1(ii)t(ii   . Then the vague Kronecker product of these vague matrices A and B be vague 

block matrix, 





















BaBaBa

BaBaBa

BaBaBa

BAS

111111

111111

111111









 

Here ]1,1[a ii   for all i=1,2,….,m as A is a vague matrix of type-1 reflexive and diagonal elements of B are

]1,1[b jj   for all j=1,2….,n as B is a vague matrix of type-1 reflexive. Therefore, 

]1,1[]s,s[ )f1(pp)t(pp    for p=1,2,….,mn, where m and n are the order of the vague matrices A nad B 

respectively. Hence the vague Kronecker product of vague matrices of type-1 reflexive is also type-1 reflexive. 

 

Theorem 3.23: If the vague matrices A and B be type-2 reflexive then the vague Kronecker product of these 

vague matrices is also type-2 reflexive. 

 

Proof: Let vague matrices A and B be type-2 reflexive, then )f1(ij)f1(jj)f1(ii aaa   and

)f1(ij)f1(jj)f1(ii bbb    . Then the vague Kronecker product of these vague matrices A nad B be vague 

block matrix BAS  . Vague block matrix S contains mm blocks, diagonal blocks are vague matrices 

Ba ii and off diagonal blocks are Ba jj  where ji  .  

 Now for the diagonal blocks, 

  }b,amin{s )f1(pq)f1(ii)f1(pq   [where  i=1,2,….,m and p,q=1,2,…,n] 

  }bb,amin{ )f1(qq)f1(pp)f1(ii   [as B is type-3 reflexive] 

  )f1(qq)f1(pp ss   . 

 Now for off diagonal blocks, 
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  }b,amin{s )f1(pq)f1(ij)f1(pq   [where  i, j=1,2,….,m and p,q=1,2,…,n] 

  }bb,amin{ )f1(qq)f1(pp)t(ij   [as B is type-3 reflexive] 

  )f1(qq)f1(pp ss   . 

Again, )f1(ij)f1(jj)f1(ii aaa   for all i, j= 1,2,…,m. Therefore, )f1(ll)f1(kk)f1(kl sss   , 

k=1,2,……,mn,  l=1,2,….,mn. Hence the vague Kronecker product of the vague matrices A and B  is also type-

3 reflexive. 

 

Theorem 3.24: If the vague matrices A and B be type-3 reflexive then the vague Kronecker product of these 

vague matrices is also type-3 reflexive. 

 

Proof: Let vague matrices A and B be type-3 reflexive, then )t(ijjj)t(ii a)t(aa  and )t(ijjj)t(ii b)t(bb   . 

Then the vague Kronecker product of these vague matrices A and B be vague block matrix BAS  . Vague 

block matrix S contains mm blocks, diagonal blocks are vague matrices Ba ii and off diagonal blocks are Ba jj  

where ji  .  

 Now for the diagonal blocks, 

  }b,amin{s )t(pq)t(ii)t(pq  [where  i=1,2,….,m and p,q=1,2,…,n] 

  }bb,amin{ )t(qq)t(pp)t(ii  [as B is type-3 reflexive] 

  )t(qq)t(pp ss  . 

 Now for off diagonal blocks, 

  }b,amin{s )t(pq)t(ij)t(pq  [where  i, j=1,2,….,m and p,q=1,2,…,n] 

  }bb,amin{ )t(qq)t(pp)t(ij  [as B is type-3 reflexive] 

  )t(qq)t(pp ss  . 

Again, )t(ij)t(jj)t(ii aaa  for all i, j= 1,2,…,m. Therefore, )t(ll)t(kk)t(kl sss  , k=1,2,……,mn,  

l=1,2,….,mn. Hence the vague Kronecker product of the vague matricies A and B  is also type-3 reflexive. 

 

Theorem 3.25: If vague matrices A and B be of type-4 reflexive then the vague kronecker product of these 

vague matrices is also type-4 reflexive. 

Proof: Let vague matrices A and B be type-4 reflexive, that is )t(ijjj)t(ii a)t(aa  ,

)f1(ij)f1(jj)f1(ii aaa   and )f1(ij)f1(jj)f1(ii bbb    . )t(ijjj)t(ii b)t(bb  . Then from the above two 

theorems. Vague Kronecker product of these vague matrices A and B be vague block matrix which is type-4 

reflexive. 

 

Theorem 3.26: If vague matrices A and B be type-1 then vague Kronecker sum of these vague matrices is also 

type-1 reflexive. 

 

Proof: Let vague matrices A and B of order mm and nn respectively be type-1 reflexive, then 

]1,1[]a,a[ )f1(ii)t(ii    and ]1,1[]b,b[ )f1(ii)t(ii   . Then the vague Kronecker sum of these 

vague matrices A and B be vague block matrix,  

)B(I )I(ABA† S mn   

where nI and mI are the vague identity matrices. Now vague identity matrices nI and mI are type-1 reflexive 

vague matrices. Therefore, by the theorem, direct sum of type-1 reflexive vague matrices, is again type-1 

reflexive. Hence vague Kronecker sum of vague matrices of type-1 reflexive is also of type-1 reflexive. 
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