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ABSTRACT
In this paper the idea t of vague matrix is extended in the field of vague block matrix and discussed some of
their relational operations on vague block matrices.

INTRODUCTION

The fuzziness was mathematically described for the first time by L. A. Zadeh[10] in his classical paper in the
year 1965. The idea of fuzzy matrix was presented by Thomason[9] plays a vital role in scientific development.
The fuzzy matrices has been employed in many approaches to model the diagnostic and decision making
process .The fuzzy matrix [3,4,6] have been proposed to represent fuzzy relation in a system based on fuzzy set
theory. Many authors have exhibited a number of results on fuzzy matrices. Pal and Shyamal [7,8] introduced
two new operators on fuzzy matrices and shown several properties of them. In this paper, we introduce the
concept of vague block matrix and defined various forms of vague block matrix and also derived some of the
properties of vague direct sum, vague Kronecker sum and vague Kronecker product of vague block matrix.

PRELIMINARIES

Definition 2.1:[2] A vague set A in the universe of discourse U is characterized by two membership functions
given by:

(i) A true membership function t, :U —[0,1] and

(i) A false membership function f, :U —[0,1]
where t,(X)is a lower bound on the grade of membership of x derived from the “evidence for x”, f,(X)is a
lower bound on the negation of x derived from the “evidence for x”, andt , (X) + f,(X) <1. Thus the grade of
membership of u in the vague set A is bounded by a subinterval [t, (x),1— f,(X)] of [0,1]. this indicates that
if the actual grade of membership of x is u(x), then, t,(X) < z(x) <1— f,(X) .The vague set A is written as
A= {<X [tA(X),l— fA(X)]>/u eU }Where the interval [t, (x),1— f,(X)]is called the vague value of x in

A, denoted by V, (X).

Definition 2.2:[1] Let A and B be VSs of the form A= {<X [tA(X),l— fA(X)]>/X € X} and
B = {{x.[ts ()1— f5 ()] /x € X } Then

(i) Ac B ifandonlyif t,(X) <tg(X) and 1— f,(x) <1— f;(X) for all xe X

(i) A=Bifandonlyif AcB and BC A

(iii) A° = {(x, f,().L—t, (X)) /x e X }

(iv) ANB = {{x, min(t, (x),ts (X)) min(L— f,(x).1— 5 ()))/x e X |

(V) AUB = {{x,(t, () vtg ()1 f,(x) v1- f5(x)))/xe X}
For the sake of simplicity, we shall wuse the notation A:<X,tA,1— fA> instead of
A={x[ta()1- F, (0] /xe X }.

Definition 2.3:[5] A vague matrix A of order mx N is defined as A =[X,[< t

L= T >11,. € the function

t; i X —>[0]] and f; : X —[0,1] define the degree of truth membership function and the degree of false

mxn
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membership function of X;; in A respectively satisfying the condition 0< tij +fij <1for all i,j. The value of
TC pj (X):l—(tAij (X)+fAij (X)) is called the vague hesitation degree of the element X € X respectively to

the vague matrix A. For simplicity, we write A =[a;],,., where a; =[a;;),a;4.1]-

Vague block matrices:

Definition 3.1: A vague submatrix of a vague matrix of order greater than or equal to 1 is obtained by deleting
some rows or some columns or both( not necessarily consecutive) or neither.

Remark 3.2: A vague matrix itself is its vague submatrix. The maximum number of vague submatrices of an
N x mvague matrix is (2" —=1)(2™ -1) .
Definition 3.3: A vague submatrix of order (n-r) obtained by deleting r rows and columns of an n square vague
matrix is called vague principal submatrix. The first order principal vague submatrices obtained from the
[all(t) | alm—f)] [alz(t) ) a12(1—f)] [als(t) , al3(1—f)]
following third order vague matrix | [A,),850. 6] [Ba0,82006)] [Qogry:@0s0p)]] are
[3-31(0 ) a-31(14)] [a32(t) ) a32(l—f)] [a33(t) ) a33(l—f)]
[[alm),all(lff)]J, l[alz(t),alz(H)]J and [[als.(t),am(lff)]J . Second order vague submatrices are
_[311(0 Aa ] [Biowr@iaa ]} |:[a22(t) ] [B2s1)82301)]
_[321(0 1 a21(1—f)] [a22(t) ) a22(l—f)] [a32(t) ) a32(1—f)] [a33(t) ) a33(1—f)]

[all(t) 111011y 1 [al3(t) »A1301-1) 1

. Third order vague submatrix is the matrix itself.
_[331(0 A1) [Qsa0)r@s301)]

Definition 3.4: A vague submatrix of order (n-r) obtained by deleting last r rows and columns of an n square
vague matrix A is called leading principal vague submatrix. The first order leading principal vague submatrix is

[[all(t),almff)]J. The second order leading principal vague submatrix of the above vague matrix is

(8150800 6] [Biz0)s Q1001 ]}

[a 21(t) » @2101-1) 1 [a 22(t) 1 A22(1-) 1

Definition 3.5: The vague matrix whose elements are blocks obtained by partitioning is called vague block
matrix. Here a vague matrix is divided or partitioned into smaller vague matrices called blocks or cells with
consecutive rows and column separated by dotted horizontal lines between rows and vertical lines between
columns. Thus

[all(t) ’ all(l—f)] [a12(t) 1 Q19(1-1) | - [a13(t) 1 Q1301-1) ] [a14(t) , a14(1—f)] .
P Py
A = . =
[a21(t) ’ a21(1-1‘)] [a 22(t) 1 a22(1—f)] : [a23(t) ’ aZS(l—f)] [324(0 , a24(l—f)] .
[a4,p,a 1 [as,.a 1 ¢ [a49n,a 1 [aium. 2 ] Pa & P
31(t) 1 43101-f) 32(t) ' A32(1-f) : 33(t) * 433(1-) 34(t) ' A34(1-f)
where P= l[all(t) , al](l—f)] [a‘lz(t) ) a12(14)]J ' P, = l[alS(t) ) alS(l—f)] [a14(t) ) a14(14)]J )

21

[Qas1)1@3301)]  [A3400)2 Q3001 ] .

P _ [azmwazl(l—f)] [a22(t)’a22(1—f)] and P.. — [a23(t)’a23(1—f)] [az4(t)vaz4(1—f)]
31 =
[yt @a10-6)]  [Qaay1@3201)]
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Definition 3.6: The transpose of vague block matrix is the transpose of both blocks and constituent blocks.

AT — {Plz Pl-;j|
Py P,
21 22

Definition 3.7: If the number of rows and the number of columns of blocks are equal then the matrix is called
square vague block matrix. Thus the partltloned vague matrix,

[all(t)’all(l f)] [311(1) 18130 f)] : [all(t)’all(l f)] [all(l)’all(l f)] : [all(t)’all(l—f)] [all(t)’all(l—f)]—
[all(t)’ 11(14)] [aljh(t)' 11(14)] : [all(t)’ 11(14)] [aljl(t)’ 11(14)] : [all(t)’all(l—f)] [all(t)’alm(l—f)]
[all(t) ) al]{l—f)] [al:h(t) 'all(l—f)] : [all(t) ) al](l—f)] [alj(t) , all(l—f)] : [all(t) ) a11(14)] [all(t) ) al](l—f)]
_[all(t) ) all(l—f)] [all(t) 'all(l—f)] 5 [all(t) ) al:h(l—f)] [alj(t) , all(l—f)] E [all(t) 1 a11(14)] [all(t) 181101 ]_

— |:A11 A12 A13

is a square vague block matrix since all Aij ’s are square blocks.
A21 A22 A23

Definition 3.8: If a square vague block matrix is such that the blocks A; =[[0,0]] for all i # j then the
A, O

0
0 A, 0}, where 0 =[[0,0]]is a

vague matrix A is said to be a diagonal vague block matrix. Thus {
diagonal vague block matrix.

Theorem 3.9: If A=[a and B =[b;],,, are two vague matrices such that AB=C =[c then

[blj(t) ) blj(l—f)]
[sz(t) ) b2j(1—f)]

u]mxn u]mxp

the j-th column of C is AB;, where Bj = are the column partition of vague matrix B.
[0njiy Prja ) ]

Proof: Let vague matrix B of order Nnxp be partition into p column vectors (nx1) vague matrices as

B=[B, B, --- B; -+ B,] where j=1,2,3....p. to find a column of the product AB. From the
product rule of the vague matrices, the elements of the product is,
C; = [[msx(min{aik(t),bik(t)}, mex(min{aik(l_f) : bik(l_f)}]Ji =12,...mand j=12,..,n , where

A= |.[aik(t) , aik(l—f)]men ,B= I.[bik(t) ; bik(l—f)]Jnxp C= |.[Cik(t) , Cik(l—f)]men and C=AB.
Therefore j-th column of C is obtained by giving the values 1,2....m to I and it is,

[mfx(min{am(t) b kj(t)}! mex (min{alk(l—f) b kj(l—f)}]
[mEX (min{a .y, Py - max (min{a 1y, Pyjary 3

[ml?x (min{a mk (t) ! b Ki(t) } mgx (min{a mk (1-f) 1 b kj(1-f) H
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[all(t) 1 all(l—f)] [a12(t) ) alZ(l—f)] : [aln(t) 1 aln(l—f)] [blj(t) 1 blj(l—f)]
[321(01321(14)] [a22(t)’a22(1—f)] : [a2n(t)’a2n(l—f)] [b2j(t) ) b2j(l—f)] .
= . ,J=1,2,...,p.
(@ @man] [Bmawyr@mean] : Ja @ @mand || [PojrOnjan ]

=AB;, j=12,...,p. Hence the theorem

Theorem 3.10: Let A be an mx N vague matrix and B be an N x p vague matrix. Let B(or A) be partitioned

into two blocks by column partitioning only. Then the product AB is also partitioned into two blocks of same
column(row) partitioning.

Proof: Let B = [B1 Bz] where B, is of order nxtand B, is of order nx(p—t) vague matrix. Then
(0150 D10 1)]
(PN < PV

AB:Albl b, -+ bt byy - pr where b; = Pero :ZJ(1 0] :
[bnj(t) ! bnj(l—f)]

:[Abl Ab, -+ Ab, : Aby, - Apr:[ABl : AB, ]. Hence the proof.

Operations on vague block matrix 3.11:

Addition: The conformal vague matrices can be added by block as addition of two vague matrices of same
dimensions.

A,+B, A,+B, : A, +By
AsBo A, +B,, A, +B,, : A, + By,
A,+By, A, +B, : A, +B,

Scalar multiplication: In scalar multiplication the vague block matrix is multiplied by a scalar. That is each
oA, oA, : oA

1q
aA,, oA, I oA,

block of partition vague matrix is multiplied by scalar. That is, 0 A =
aAy oA, 1 oA

Theorem 3.12: If AB=C the vague submatrix containing rows i,,i,,....,i, and J,, J,,...., Js of C is equal to
the product of the vafue submatrix with these rows of A and the vague submatrix with these columns of B.
Proof: Let A= [aij(t),aij(lff)]Jmxn and B= l[bij(t) , bij(l_f)]Jnxp be two vague matrices. Then

n n
C:[[Cij(t)vcij(lf)]]:[[rrj]_alx(mln{aij(t)!bjk(t)}1rq?'1x(mln{aij(1f)!bjk(lf)}]} , where i=1,2,....m and

k=1,2,...,p. Now the vague submatrix C,, of vague matrix C with rows i,,i,,....,i, and columns J;, J,,...., J
is obtained by replacing row i and column k of C by these rows and columns. It is

Cy = {[n}@lx(min{a it Dk b njjgx(min{aij(l_f) : bjk(l_f)}]} ............................ @,
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where i =i,i,,....,i, and columns K = j,, J,,...., ] . Again the product of the given vague submatrices A,

and B, of vague matrix A nad B respectively is
AB, =
[ai ) aill(l—f)] [ai 12(1) ailz(l—f)] o [ailn(t) 1 ailn(l—f)]
[aizl(t)’aizl(l—f)] [aizz(t)’aiZZ(l—f)] [aizn(t)’aizn(l—f)]
[airl(t)’airl(l—f)] [airz(t)’airz(l—f)] [airn(t)’airn(l—f)] n
[bljl(t)'bljl(l—f)] [blh(t)’blh(l—f)] [bljl(t)’bn}l(lff)]

[sz'z(t)'szz(l—f)] [bZJz(t)'bZiz(l—f)] [bZiz(t)’bZiz(lff)]

nxs

[bnjr(t)'b”jr(l—f)] [b"jr(t)'bnjr(l—f)] [b”jr(t)’bnjr(l—f)]

n n n n
[max(min{a ), by} max(minaq g, byl -+ [max(mingayq, by} max(minda;q 4,0 3]

n n n n
— [n}ix(mln{aij(t) ) bjk(t)}l n]:alx (mln{aij(l—f) | bjk(l—f)}] [njjglx(mln{a ij(t) bjk(l)}! n?:alx(mm{a ija-f) bjk(l—f)}]

°r

n n n n
[max (min{a;;qy , 0 } max(minfayg ), Dyl - [max(mindagq, by} max(minfagq ), yqn}l

= [[nﬁx (min{a;;), by} njjgx(min{aij(l_f) b jk(H)}]} .............................. (2)

Ixs
where i =1i,i,,....,i, and columns K = j;, J,,...., ;. Therefore the relation (1) and (2) together gives the
results.

Vague direct sum:

Definition 3.14: Let Al,Az, ....... ,Ar be square vague matrices of orders m,, m,,...., M, respectively. The
diagonal vague matrix,
A, 0 0
. 0 A 0
diag (A, A, ..., A,) = z
0 0

FA(mp+my+....... +m,)
is called the vague direct sum of the square vague matrices A, A,,....... A, and is expressed by
A DGA,D... DA, oforder (M, + M, +....+m,). Itisalso called the vague block diagonalize form.

Properties of vague direct sum:
Vague direct sum of vague matrices possesses the following algebraic properties:
1. Commutative property: Commutative property does not hold of the square vague matrices.
Let A and B be two square vague matrices. Then the vague direct sum of A and B are

A 0 B 0
A®B= and B® A = . Itis obvious that, A@B=B®A.
0 B 0 A
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2. Associative property: Let A, B and C be three square vague matrices. Then A®@ B = {0 B} =D

Now,
_ - [A 0 0]
D O B 0
(A®@B)®C=D®C= =0 B O0]. Similarly, B&C= =E . Now,
0 C 0 C
- - |0 0 Cj
_ - [A 0 0]
A 0
ADB®C)=ADE= 0 EI° 0 B O Therefore,
- - |0 0 Cj
(A®@B)®C=A®(B®C). Hence, the associative law holds for direct sum of the vague block

matrix.
3. Mixed sum: (A+B)®(C+D)=(A®B)+(C®D) , if the addition are conformable

corresponding vague block matrices. By the definition of the vague block matrix and vague matrix
addition,

AsB)@(CsD)=|ATE 0 | (A 01 B0 eo i BaD
(A+B)S(C ){ 0 (C+D)}_{O c}{o D}_( )+ )

4. Vague matrix multiplication of vague direct sum: (A @ B)(C® D) =(AC)® (BD) if the
multiplication is conformable for vague matrix.

A 0] [c 0] [AC O
(A(—BB)(C@D):{O B}{O D}{o BD}(AC)@(BD)

. . T T T . A 0
5. Transposition of vague matricess (A®B) =A @B’ . Since, A®B= 0 B then
A 0] [AT
(A®B)" = = 0 =AT@®B".
0 B 0 BT

Vague Kronecker product of vague matrices 3.15:
Let A= [<aij(t),aij(1_f)>]mxn and B = [<bij(t),bij(lff)>]pxq be two rectangular vague matrices. Then

the vague Kronecker product of A and B, denoted by A ® B is defined as the partitioned vague matrix

a,B a,B - a,B
a,B a,B --- a,B

A®B=| % 22 ) ol where  a; =[< ;4,05 >] for =12,...m and
amlB amZB a‘mn mpxnq

j7=1,2,....n. It has mn blocks. The ij th blocks aijB of order px(Q.
Vague Kronecker product of two vague column vectors 3.16:
-
Let X =[< Xypys Xyary > < Xy s Xpqgy > eeeeeeseeneeees <Xy Xnary >l and

T
Y=[< Y Yaary > < Yauys Yau ) >eeeereeseereens: <Y Ynar >] be two column vague vectors.
Then by definition of vague kronecker product, we have

http: // © International Journal of Engineering Sciences & Management Research
(21]



[Mariapresenti *, 5(7): July, 2018] ISSN 2349-6193
DOI: 10.5281/zenodo.1314188 Impact Factor: 3.866

IJESMR

nternational Journal OF [=ngineering Ociences & |Vlianagement "esearch

[< Xy X1y 1< Vagy s Yary >]

[< Xy Xaa1) 1< Yoy Ymary >]
[< Xy Xaqry =Y || [< Xoys Xoaory 1< Vi s Vi) >

X®y = [< X2(t)7x.2(1—f) >y
: [< X0 Xoa6) 1< Yy s Ymary >]

[< Xnyr Xna-ry >1Y

[< Xy Xng-) >][< Yiryr Yia-n >]

_[< Xy Xng-f) >][< Yoy 1 Yma-n) >]_

nmx1

Properties of vague Kronecker product 3.17:
Let A, B and C be vague matrices then the vague Kronecker product satisfies the following:

1. Commutative : The vague Kronecker product is not commutative, A®B = B&® A.
2. Distributive: If B and C are conformable for addition, then

A®(B+C)=A®B+A®C [left distribution]

(B+C)®A=B®A+C®A [right distribution]

Associative: AR (B®C)=(A®B)®C.

Transposition: (A®B)" =AT ® BT.

Trace: Tr(A®B) = (TrA)(TrB).

Two vague column vectors o and 3, not necessarily of the same order: a’ ® B= BOLT =p® a'.
det(A,.. ®B__)=(detA)"(detB)".

N g s~ w

Vague Kronecker sum 3.18:
The vague Kronecker sum of two square vague matrices A and B, is defined by At
B=A®I, +1, ®B, whichisan nmx nm vague matrix.

[0.3,0.5] [0.3,0.6] [0.1,0.8]

Example 3.19: Let A =|[0.2,0.6] [0.4,0.6] [0.5,0.6] |and B :{
[0.1,0.7] [0.2,0.5] [0.3,0.6]

matrices. Then A1B=A®I, +1,®B.

[0.1,0.7] [0.4,0.5]

be two vague
[0.2,0.5] [0.1,0.6]}

[0.30.7] [0.405] : [0306] [00] : [0108 [00] ]
[0.2,05] [0.306] : [00] [0.306] : [00] [0.10.8]
wrp_|[0206] [00] © [0407] [0405] : [0506] [00]
fB= [0,0] [0.2,06] : [0205] [0.406] : [00] [0.5,0.6]
[0.10.7] [00] : [0.205] [00] : [0.30.7] [0.4,0.5]
| [00] [0107] : [00] [0205] : [0.205] [0.30.6]
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Some relational operations on vague block matrices:

Here we define four special types of reflexivity and irreflexivity of a vague matrices.
Definition 3.20: Let A be a vague matrices of any order then,
0] R, : Ais of type-1 reflexive if Qi) =1 and Qjjar) =1, for all i=1,2,...,n.
(ii) R, : Ais of type-2 reflexive if (8;,; 1) Ajjq 1)) = @y s)» forall i, j=1,2,....n.
(iii) R, : Ais of type-3 reflexive if (aii(t) A ajj(t)) > Q> for all i, j=1,2,....n.
(iv) R,: As of type-4 reflexive if (2, 1) A 1)) = @01y and (@j1) Ajry) = Ay » Where

i,j=1,2,...,n.
For irreflexivity,

0] R,: Ais of type-1 reflexive if Q) = 0 and Qjapy = 0, for all i=1,2,...,n.

(i) R, : Ais of type-2 reflexive if (aii(H) % ajj(H)) <@gy, foralli, j=1,2,...n.

(iii) R, : Ais of type-3 reflexive if (aii(t) v ajj(t)) <@y, forall i, j=1,2,....n.

(iv) R,: As of type-4 reflexive if (2,4 1) V @} 1)) < @0y and @y V @j)) < Ay » Where
i,j=1,2,...,n.

Theorem 3.21: If vague matrices A and B be reflexive of any type then direct sum of these vague matrices is
also reflexive of the same type.

Proof: (i) Let vague matrices A and B be type-1 reflexive, then [<a;),a;u ) >]=[<11>] and

<D, 0506y > =|<L1>]. Then the direct sum of these vague matrices A and B e vague block matrix,
bll(t) bll(l f) 11 h he di f th i dBb block i

0
S=A®B :{0 sl Now [<Sji,Sia s >]=[<L1>], since diagonal elements in vague block
matrices S are vague matrices A and B and diagonal elements in A and B are [<1,1>]. Hence the direct sum S
of the vague matrices A and B is type-1 reflexive.
(if) Let vague matrices A and B be type-2 reflexive, then (aii(H) A ajj(H)) = i,y and

(0iiary ADjjasy) = Dy sy - Then the direct sum of these vague matrices A and B be vague block matrix
S=A®B. Now for A blocks we have
Sian = Qi 1=12,....m, j=12,....,m]
< @jp) AQjjar) [as A s type- 3 reflexive ]
=Siia-n N Sjia-n -
Now for B blocks we have,
S (mep)meqyi-f) = bpq(l—f) [p=12,...,n,q9=12,...,n]
<Bppa ) ADgqusy [as Bis type- 3 reflexive ]

=S (mep)mep)i-f) N S(mrqymeaya-f) -[as Off diagonal blocks are vague zero
matrices]
Therefore, Sy 1) <Swka ) ASuasy K=12,....,m+n, 1=12,....,m+n.Hence the direct sum S of
the vague matrices A and B is type-3 reflexive.

(i) Let vague matrices A and B be type-3 reflexive, then (a;, AQj)) =y and

it
(Diity ADjjy) = Dy - Then the direct sum of these vague matrices A and B be vague block matrix
S=A®B. Now for A blocks we have
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Sijy =iy [1=12,....m, j=12,...,m]
<@ AN [as Als type- 3 reflexive ]
=Siin NS
Now for B blocks we have,

Smepxmea)t = Ppgry [P =12,..,n, g =12,....,n]

< bpp(t ga(t)
= S(mep)mep)t) N S(miqymiq)t) [ Off diagonal blocks are vague zero matrices]

y A b [as B is type- 3 reflexive ]

Therefore, Sy;) < Sy A S k=12,.. m+n, 1=12,..... ,M+nN. Hence the direct sum S of the
vague matrices A and B is type-3 reflexive.

(iv) Let vague matrices A and B be type-4 reflexive, then @;;, ¢y A8jiq ¢y, jiry AQjjry aNd

jict
Biicary APjasys Biiry ADjjey - Then the direct sum of these vague matrices A nad B be vague block matrix

of type-4 reflexive, by results (ii) and (iii). The direct sum of the vague matrices reflexive of any type is also
reflexive of the same type.

Theorem 3.22: If the vague matrices A and B be type-1 reflexive then the vague Kronecker product of these
vague matrices is also type-1 reflexive.

Proof: Let vague matrices A and B be type-1 reflexive, then [<ay),Q;q >]=[<L1>] and

[< biiy» Diiery >1=[<L1>]. Then the vague Kronecker product of these vague matrices A and B be vague

block matrix,
a,,B a,B - a,B
S A®B< a,;,B a;B a,,B
a,,B a,B --- a;B

Here a;; = [1,1] for all i=1,2,....,m as A is a vague matrix of type-1 reflexive and diagonal elements of B are
by =[L1] for all j=12...n as B is a vague matrix of type-1 reflexive. Therefore,

[< Spp(t) ,Spp(H) >] = [< 11 >] for p=1,2,....,mn, where m and n are the order of the vague matrices A nad B

respectively. Hence the vague Kronecker product of vague matrices of type-1 reflexive is also type-1 reflexive.

Theorem 3.23: If the vague matrices A and B be type-2 reflexive then the vague Kronecker product of these
vague matrices is also type-2 reflexive.

Proof: Let vague matrices A and B be type-2 reflexive, then &, ¢ A, =84 and
Biia ) APjas) = Dijas - Then the vague Kronecker product of these vague matrices A nad B be vague
block matrix S= A &® B. Vague block matrix S contains mm blocks, diagonal blocks are vague matrices
a;;Band off diagonal blocks are a ;B where i # j.
Now for the diagonal blocks,
Spaa-t) = mln{aii(H) ) bpq(lff)}[where i=1,2,....,m and p,q=1,2,...,n]

<min{@;; ¢y, D ppa 1) v Dyga s 3 [as B is type-3 reflexive]

< Sppat) V Sqqa-)-
Now for off diagonal blocks,
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Spqa-f) = min{aij(H) , bpq(H)}[where i, j=1,2,.....,m and p,q=1,2,...,n]
<mind@; .y, bpa ) Vv Dyqa sy} [as B is type-3 reflexive]

< Sppaf) V Sqaan)-

Again, g ¢y ABjgg) = Qg for all i, j= 1.2,...m. Therefore, Sy q ¢y <Syu¢) VSyas -

k=1,2,...... ,mn, 1=1,2,....,mn. Hence the vague Kronecker product of the vague matrices A and B is also type-
3 reflexive.

Theorem 3.24: If the vague matrices A and B be type-3 reflexive then the vague Kronecker product of these
vague matrices is also type-3 reflexive.

Proof: Let vague matrices A and B be type-3 reflexive, then a;;,, Aa;(t) > a;;, andby, Ab; (1) 2 by, -
Then the vague Kronecker product of these vague matrices A and B be vague block matrix S= A ® B. Vague
block matrix S contains mm blocks, diagonal blocks are vague matrices a;; B and off diagonal blocks are a ;B
where 1 # .

Now for the diagonal blocks,

Spaity = min{aii(t) , bpq(t)}[where i=1,2,....,m and p,q=1,2,...,n]

<min{@;; ), B oy v Dy} [as B is type-3 reflexive]
< Spp) V Saa(-
Now for off diagonal blocks,

Spaity = min{aij(t) , bpq(t)} [where 1, j=1,2,....,m and p,q=1,2,...,n]

<min{@; ., by V Dyqeey }[as B is type-3 reflexive]

< Sppy V Saqy -

Again, a;q) A8y = 8y for all i, j= L2,...m. Therefore, Sy =Sy VS » k1.2, ,mn,
1=1,2,....,mn. Hence the vague Kronecker product of the vague matricies A and B is also type-3 reflexive.

Theorem 3.25: If vague matrices A and B be of type-4 reflexive then the vague kronecker product of these
vague matrices is also type-4 reflexive.

Proof: Let vague matrices A and B be type-4 reflexive, that is a“(t)Aajj(t)zaij(t) \

Qi) AQjjas) = Qja g and bii(H) A bjj(H) > bij(H) . bii(t) A bjj (t)> bij(t). Then from the above two

theorems. Vague Kronecker product of these vague matrices A and B be vague block matrix which is type-4
reflexive.

Theorem 3.26: If vague matrices A and B be type-1 then vague Kronecker sum of these vague matrices is also
type-1 reflexive.

Proof: Let vague matrices A and B of order mxm and Nnxn respectively be type-1 reflexive, then
[< @i Qiiery >1=[<L1>] and [< by, 050 ) >]=[<L1>]. Then the vague Kronecker sum of these
vague matrices A and B be vague block matrix,

S=AtB=(A®Il,)+ (I, ®B)

where | and | are the vague identity matrices. Now vague identity matrices | and | are type-1 reflexive

vague matrices. Therefore, by the theorem, direct sum of type-1 reflexive vague matrices, is again type-1
reflexive. Hence vague Kronecker sum of vague matrices of type-1 reflexive is also of type-1 reflexive.
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